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Abstract  
 
Objective: In recent years, researchers and neuroscientists have begun to use a variety of nonlinear techniques for 

analyzing neurophysiologic signals derived from fMRI, MEG, and EEG in order to describe the complex dynamical aspects 
of neural mechanisms. In this work, we first attempted to describe different algorithms to estimate neural complexity in a 
simple manner understandable for psychiatrists, psychologists, and neuroscientists. Then, we reviewed the findings of the 
brain complexity analysis in psychiatric disorders and their clinical implications. 
Method: A non-systematic comprehensive literature search was conducted for original studies on the complexity analysis 

of neurophysiological signals such as electroencephalogram, magnetoencephalogram, and blood-oxygen-level-dependent 
obtained from functional magnetic resonance imaging or functional near infrared spectroscopy. The search encompassed 
online scientific databases such as PubMed and Google Scholar. 
Results: Complexity measures mainly include entropy-based methods, the correlation dimension, fractal dimension, 

Lempel-Ziv complexity, and the Lyapunov exponent. There are important differences in the physical notions between these 
measures. Our literature review shows that dementia, autism, and adult ADHD exhibit less complexity in their 
neurophysiologic signals than healthy controls. However, children with ADHD, drug-naïve young schizophrenic patients 
with positive symptoms, and patients with mood disorders (i.e., depression and bipolar disorder) exhibit higher complexity 
in their neurophysiologic signals compared to healthy controls. In addition, contradictory findings still exist in some 
psychiatric disorders such as schizophrenia regarding brain complexity, which can be due to technical issues, large 
heterogeneity in psychiatric disorders, and interference of typical factors. 
Conclusion: In summary, complexity analysis may present a new dimension to understanding psychiatric disorders. While 

complexity analysis is still far from having practical applications in routine clinical settings, complexity science can play an 
important role in comprehending the system dynamics of psychiatric disorders. 
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Psychiatric disorders are typically considered complex 

conditions, not only for relatively difficult diagnosis 

issues that are related to the psychopathology of patients, 

but also for comprehensive integrated management of 

such patients that require psychological, biological, and 

social care due to the multidimensional nature of 

psychiatric illnesses (1, 2). However, some researchers 

suggest that the complexity of psychiatric disorders may 

be comprehended through investigating the dynamics of 

psychical functioning. Indeed, they applied the principles 

of physics and physical models to explain the relationship 

between psychical energy and the human mind (3). 

Although such an approach to mental illnesses appears 

attractive and interesting, lack of strict analysis 

techniques made the processes of psychodynamics 

understanding vague and ambiguous (4). Over time, 

research on brain functioning had become an appealing 

interdisciplinary field with no longer any restrictions to 

neuroscience, neurology, and psychiatry. Various 

relevant principles from physics and mathematics with 

the aid of computer science are growingly employed to 

study the human brain and, subsequently, the 

abnormalities and neuropathologies related to the mental 

illnesses (5, 6). In fact, computational psychiatry and 

computational neuroscience approaches utilize these 

nonmedical concepts to explore the complex behaviors 

and symptoms in patients with different psychological 

conditions (7, 8). Nonlinear analysis and the concept of 

complexity is one of these important disciplines that has 

been used in the last few decades to inform us about 

complex pathological mechanisms in brain functioning 

resulting from various psychiatric conditions (9). The 

dynamical time-dependent nature of psychiatric 

disorders, such as autism, schizophrenia, depression, and 

bipolar disorder, which are characterized by pathological 

variations of neurotransmitter levels and lead to chaotic 

and unpredictable patterns of neural activities, support 

this idea that complexity science and nonlinear dynamics 

analysis of the brain function can provide more insights 

into complex behavioral manifestations in psychiatric 

patients (10). 

The approaches based on this complexity concept have 

provided potentials in quantifying the behavioral 

symptoms or disease course of different mental illnesses 

(11). For instance, patients with schizophrenia have been 

shown to have more regular behaviors with less 

complexity compared to healthy individuals in a cognitive 

task (12). Patients with bipolar disorder have more 

predictable patterns compared to healthy individuals in a 

daily record of mood (3). Given the highly complex 

nature of the human brain, this informative concept has 

been widely utilized for the analysis of 

neurophysiological signals such as BOLD, MEG, and 

EEG. The nonlinear and chaotic nature of such biological 

signals supports the use of complexity analysis to quantify 

important hidden patterns of neural activity (13). 

Traditionally, both time and frequency analyses of 

neurophysiological data have been used to infer the 

function of the neurons and identify their pathologic 

conditions (14, 15). However, the knowledge derived 

from such methods is limited, because we deal with a 

huge network of millions of neurons, axons, and synapses 

that are linked in a hierarchical and highly organized 

manner by nonlinear dynamic processes. Thus, in recent 

years, researchers and neuroscientists have begun to use a 

variety of nonlinear techniques for analyzing 

neurophysiologic signals derived from fMRI, MEG, and 

EEG in order to describe the complex dynamical aspects 

of neural mechanisms. Researches in various fields of 

science have indicated that nonlinear methods can more 

accurately model complex systems (16). Since 1985, 

when Rapp et al. (17) and Babloyantz et al. (18) first 

applied chaos theories to analyze EEG data, several 

nonlinear analytic methods were introduced and 

considerable advances were made in the field of 

biological signal processing with the advancement of 

mathematical and computer science (19). In this work, we 

first attempted to describe different algorithms used to 

estimate neural complexity in a simple manner 

understandable for psychiatrists, psychologists, and 

neuroscientists. Then, we reviewed the findings on brain 

complexity analysis in psychiatric disorders and their 

clinical implications. 

Complexity measures 

Over the years, different complexity measures have been 

introduced and utilized to investigate psychiatric 

disorders based on various neurobiological data, as 

depicted in Table 1. These measures include entropy-

based methods, the correlation dimension, fractal 

dimension, Lempel-Ziv complexity, and the Lyapunov 

exponent. It is important to note that there are notable 

differences in the physical notions among these measures. 

For instance, the Lyapunov exponent and correlation 

dimension are formulated based on chaos theory, whereas 

Lempel-Ziv measure is an algorithmic complexity that 

operates based on symbolizing the oscillations of a time 

series (20). Each measure has its own important 

prerequisites and considerations that should be taken into 

account during analysis and interpretation to avoid 

incorrect observations and interpretations. Generally, 

complexity estimators can be categorized into indices of 

regularity and predictability. Estimators of predictability 

measure the temporal (e.g., fractal dimension and 

detrended fluctuation analysis) or spatial (e.g., correlation 

dimension and Lyapunov exponent) dimensionality of a 

dynamical system, whereas estimators of regularity 

measure the complexity of the output of a dynamical 

system on single- (e.g., approximate/sample/fuzzy 

entropy and Lempel-Ziv complexity) or multi-scales 

(e.g., multiscale entropy). In the following sections of this 

paper, we reviewed various findings of original studies on 

the complexity analysis of neurobiological signals in 

psychiatric disorders. 

 

 



 Brain Complexity and Psychiatric Disorders 

 Iranian J Psychiatry 18: 4, October 2023 ijps.tums.ac.ir 495 

Table 1. Brief Description and Main Consideration of Some Important Complexity Measures Applied to 
Neurophysiological Signals 

 

Complexity measure Brief description Main consideration 

Lyapunov exponent 

The Lyapunov exponent (LE) examines the dynamic aspects 
of the trajectory and describes the chaotic nature of a system. 
LEs calculate the mean exponential convergence (negative 
exponents) or divergence (positive exponents) of trajectories 
of the attractor starting at adjacent initial conditions in the 
phase space. In fact, LE measures the changes in the final 
data with respect to changes in initial conditions and, 
naturally, it is a function of time; and as a result, it indicates 
the sensitive dependence on initial conditions. 

It requires a large quantity 
of data and stationary and 
noise free time series. 

Correlation dimension 
Correlation dimension as a widely utilized measure is the 
complexity or the degrees of freedom to explain the dynamics 
by determining the distribution of points in the phase space. 

It requires a large quantity 
of data and stationary and 
noise free time series. 

Fractal dimension 
Fractal dimension is a statistical indicator of complexity based 
on details in the pattern changes with the scale to quantify the 
self-similarity of time series. 

It is sensitive to the noise 
level, amplitude and 
density of the sampled 
oscillations. 

Lempel-Ziv complexity 

Lempel-Ziv is an algorithmic complexity that works based on 
symbolizing the oscillations of a time series. It enumerates the 
number of separate substrings and their recurrence rate along 
a finite time series. 

It is sensitive to the 
bandwidth of the time 
series spectrum and the 
probability density 
function of the time series. 

Approximate entropy 

Approximate entropy is an information theory-based algorithm 
for quantifying the amount of randomness in a time series by 
measuring the logarithmic probability of patterns runs that are 
close for adjacent observations that stay close on subsequent 
comparisons. 

It depends on the data 
length and uniformly and 
provides underestimations 
for short-length data. It 
also lacks relative 
consistency. 

Sample entropy 

Sample entropy is the modified version of approximate 
entropy to assess the complexity of biological signals that 
works based on the negative natural logarithm of the 
conditional probability of the sequences of data vectors. 

It provides more regularity 
than the real value due to 
its formulation. It is 
sensitive to its parameters 
and also noise level. 

Multiscale entropy 

Multiscale entropy is an information theory-based algorithm 
for quantifying the amount of randomness in a time series at 
several temporal scales through a coarse-graining method. 
Randomness at every temporal scale is estimated using 
sample entropy. 

It is sensitive to its 
parameters and also 
noise level. 

 

Dementia 

Given the high prevalence of dementia and its high cost 

and burden for the healthcare system and society, 

effective prevention approaches, such as the early reliable 

identification of its biomarkers, are paramount to address 

this critical health issue (21). Late-onset Alzheimer’s 

disease (AD) is responsible for most cases of dementia 

which impacts memory as well as cognitive and executive 

functions seriously, and thus a great portion of the 

literature in the field of nonlinear complexity analyses is 

devoted to AD (22). EEG, MEG, and BOLD (captured 

from fMRI or fNIRS) signals recorded from AD patients 

in resting-state and task-related conditions have been 

extensively subjected to the complexity analysis through 

various complexity measures such as entropy algorithms, 

Lempel-Ziv complexity, and fractal dimension (21, 23-

34). In general, these studies demonstrated that the 

neurophysiological signals from AD patients exhibit 

more predictable oscillations and less complexity 

compared to healthy individuals, mostly in the right 

frontal, temporal, occipital, and left parietal regions. This 

finding is relatively consistent among studies, which 

derived from the complexity of different frequencies and 

temporal scales. This important observation may indicate 

the presence of distinct dynamical systems in the brain 

affected by AD, supporting the disconnection syndrome 

hypothesis underpinning the neuropathology of AD and 
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providing further insights into abnormal neural 

connectivity in this disease (35). In addition to AD, other 

types of dementia have also been investigated in terms of 

brain complexity. For example, Nicastro et al. showed 

that patients with frontotemporal dementia had a reduced 

MRI complexity in the cingulate regions, insula, 

paracentral gyrus, and orbitofrontal cortex compared to 

healthy peers. Moreover, this reduced complexity was 

correlated with cognitive function impairments, 

especially language and memory impairments, in patients 

with frontotemporal dementia (21). 
 

Autism 

Autism is a neurobiological developmental illness 

characterized by serious social problems, language and 

cognitive dysfunctions, atypical motor and sensory 

functioning, and repetitive behaviors (36). Abnormal 

neural connectivity (both structural and functional) is the 

main neuropathological mechanism that is associated 

with autism symptoms (37). Over the past two decades, 

several studies have utilized complexity measures, 

especially multiscale entropy, to better understand the 

neuropathological mechanisms underlying autism, mostly 

using EEG signals (38-42). These studies almost 

consistently suggest that autistic brains exhibit reduced 

complexity compared to normal brains in the occipital and 

temporo-parietal areas across all ages. There is an 

accumulating consensus suggesting that this reduced 

complexity is associated with aberrant neural 

connectivity in autism. For instance, Ghanbari et al. found 

that increased functional connectivity was significantly 

correlated with decreased complexity in children with 

autism, probably due to inhibitory dysregulation in their 

cortical circuits (40). Furthermore, it has been shown that 

the amount of complexity reduction is associated with the 

severity of autistic symptoms, such that severe autistic 

patients manifest significantly greater reduction in 

complexity than autistic patients with mild symptoms 

(41). Remarkably, Kang et al. demonstrated that a 10-

session anodal transcranial direct current stimulation over 

the dorsolateral prefrontal cortex can significantly shift 

the brain electrical activity of autistic patients to 

randomness and increase EEG complexity towards 

normal patterns (43).  
 

Schizophrenia 

Schizophrenia is a severe mental illness with a broad 

variety of clinical symptoms, such as paranoia, delusion, 

and hallucination, as well as cognitive impairments. 

Schizophrenia has been conceptualized as a disconnection 

syndrome from a computational and theoretical 

perspective with disruptions in several constraint 

organizations within and between neurological 

subsystems in the brain (44). Indeed, growing evidence 

suggests the presence of functional and structural 

abnormal neural connectivity among patients with 

schizophrenia (45). Complexity measures have been 

widely employed in schizophrenia research to elucidate 

the neuropathological mechanisms involved in this illness 

(46-58). Compared to dementia and autism, previous 

studies inconsistently reported decreased or increased 

complexity during rest, sleep, or cognitive functioning in 

schizophrenia. These contradictory reports can be 

attributed to several important factors. Firstly, previous 

studies showed that the neurophysiologic recording 

protocol (i.e., in resting-state condition or during 

cognitive tasks) affects complexity patterns. For instance, 

Kirsch et al. found no difference between patients with 

schizophrenia and healthy controls in terms of EEG 

complexity in resting-state; however, different 

complexity behaviors were observed between patients 

and controls during cognitive tasks (55). Secondly, the 

condition and course of the disease may affect brain 

complexity patterns. For instance, schizophrenic patients 

with positive symptoms showed different EEG 

complexity patterns compared to those with negative 

symptoms (54). Lastly, medication and age have been 

shown to be important factors affecting brain complexity 

patterns in schizophrenia. Younger patients with 

schizophrenia showed increased complexity compared to 

older counterparts (12). Moreover, it has been shown that 

increased EEG complexity in patients with schizophrenia 

shifts toward more predictable patterns comparable to 

healthy subjects after treatment with antipsychotics (47). 

In general, it appears that drug-naïve, young patients with 

positive symptoms (highly symptomatic) tend to show 

aberrantly increased complexity compared to their 

healthy peers. A recent computational study suggested 

that an imbalance in the ratio of excitation to inhibition in 

cortical neuronal populations is a possible cause of this 

abnormally greater brain complexity in schizophrenia 

(59). However, further studies are required to 

systematically investigate multiple complexity measures 

using different neuroimaging modalities to provide more 

conclusive and consistent results and clarify the 

neuropathological processes underlying schizophrenia.  
 

Depression and bipolar disorder 

After early efforts to investigate the relationship between 

depressive disorders and brain fluctuations, which led to 

important theories such as frontal EEG asymmetry (60), 

the use of complexity measures for diagnosing depression 

and assessing its brain abnormalities, as well as 

evaluating treatment progress, has expanded over the last 

two decades. Few studies have used neuroimaging 

modalities to examine the complexity of different brain 

regions in depression (61), and most studies have used 

EEG and MEG data (49, 62-67). Entropy-based measures 

and fractal dimension are the most common complexity 

measures employed in these studies. Such studies 

consistently suggest that brain complexity is increased in 

depressive disorders, especially in the frontal region, 

probably due to impairments in the mechanisms of 

cortical inhibition control. Furthermore, they reported 

that the complexity of neurophysiologic signals recorded 

from patients with depressive disorders shifts toward a 

normal range after different treatments such as 

psychopharmacology and electroconvulsive therapy. In 

fact, the greater the reduction in complexity (i.e., the more 
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the pattern of brain activity complexity resembles the 

normal pattern), the greater the reduction in depressive 

symptoms (63, 66, 68). In addition, very few studies have 

investigated the brain complexity of bipolar disorder as an 

affective illness with distinct underlying 

neuropathological mechanisms, such as impaired gray 

matter volume and deficits in the frontal cortex (69). The 

results of these studies almost consistently indicate that 

the brain complexity of patients with bipolar disorder is 

increased in the middle temporal gyrus and middle frontal 

gyrus. Notably, this abnormal complexity pattern in brain 

activity has been shown to be associated with the clinical 

symptoms and cognitive functions of bipolar disorder 

(70-72). 
 

Attention-deficit/hyperactivity disorder 

Attention-deficit/hyperactivity disorder (ADHD) is one 

of the most common psychiatric conditions in children 

and adolescents, affecting 4-10% of the pediatric 

population worldwide (73). Thus, the majority of studies 

investigating brain complexity in ADHD have been 

conducted on pediatric populations. Many 

electrophysiological and neuroimaging studies have been 

conducted on ADHD and linked different 

neuropathological mechanisms to the core symptoms of 

the disorder, such as inattention and impulsivity (74, 75). 

Some of these neuropathological mechanisms were later 

used as criteria for the diagnosis of ADHD as well as in 

neuropsychological treatments such as neurofeedback. 

The most famous of these measures is the theta-to-beta 

ratio, which has been extensively studied in ADHD (76). 

Additionally, fronto-striatal impairment has emerged as a 

definitive pathophysiological characteristic in ADHD 

(77). However, few studies have attempted to investigate 

brain complexity through nonlinear dynamic analysis in 

ADHD. Interestingly, this limited number of studies 

yielded remarkable findings regarding patterns of brain 

complexity in ADHD using EEG, MEG, fMRI, and 

fNIRS modalities. All studies involving ADHD children 

consistently reported increased brain complexity, 

particularly in the right frontal lobe, compared to normal 

children (5, 19, 78, 79). Meanwhile, Sohn et al. in their 

study of adolescents with ADHD showed reduced 

complexity in the right frontal region during a cognitive 

task, but not at rest, compared to healthy adolescents (80). 

In contrast, all studies focusing on adults with ADHD 

showed reduced brain complexity in frontal and occipital 

regions compared to healthy peers (81, 82). In summary, 

it seems that the disturbance in the complexity pattern of 

brain activity in ADHD is affected by age, changing from 

lower complexity values in childhood to higher 

complexity values in adulthood (Figure 1). However, 

further research is needed to prove such a finding in 

different conditions. 

 

 

 
 

Figure 1. Overview of Changes in Brain Complexity with Psychiatric Disorders
 
  

Other psychiatric disorders 

Other psychiatric disorders have also been investigated 

through complexity measures, mainly using EEG signals, 

including obsessive compulsive disorder (OCD) (83-86), 

dissociate disorder (87), social anxiety disorder (88), 

panic disorder (89), anorexia nervosa (90), and post-

traumatic stress disorder (PTSD) (91). In general, all these 

studies report lower brain complexity in patients 

compared to healthy peers. Furthermore, some of these 

studies have found a significant relationship between this 

impaired complexity pattern and core symptoms of the 

respective disorders, suggesting that the reduced brain 

complexity may be associated with deficits in neural 

integration in these psychiatric illnesses. For instance, 

Aydin et al. found reduced EEG complexity in the 

prefrontal and right fronto-temporal regions in patients 

with OCD. They concluded that these abnormal 

complexity patterns in OCD are similar to those 

neuroimaging studies that categorize OCD as a subgroup 

of anxiety disorders (86). However, it should be noted that 

complexity studies focusing on these psychiatric 

disorders are so rare, and more research is needed to 

confirm these findings and make a definitive conclusion. 

 

Discussion 
The human cerebral cortex is a highly organized complex 

system characterized by its tremendous dynamical neural 

communications and connectivity across functionally 
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specialized areas, which underlies various functions such 

as perception, language, learning, action, and cognition 

(92). Many efforts have been made to understand this 

complex neural network and its impairments employing 

complexity analysis in different conditions, especially 

mental illnesses. In this review, we aimed to present a 

general picture of the patterns of brain complexity in 

psychiatric disorders. However, it should be noted that the 

interpretation of changes in complexity measures must be 

done with extreme caution. This is because healthy 

mental function is naturally complex and can be 

influenced by different health conditions such as sleep, 

resting state, and cognitive/executive functions (9). 

Meanwhile, it is worth noting that both extremely random 

(irrational or impulsive behaviors) or ordered 

(stereotyped or repetitive behaviors) patterns are not 

desirable. Observed psychopathology in daily practices 

follow a pattern of randomness and order. Indeed, healthy 

mental functions are complex in a normal physiological 

range and may deteriorate into two different pathological 

paths: randomness and order. From a macroscopic 

perspective, children with ADHD usually show impulsive 

behavior that has a sense of randomness, while autistic 

patients exhibit repetitive behaviors that have a sense of 

order. Comparable implications can be expanded to 

thought, cognition, speech, emotion, and symptomatic 

behaviors such as apathy, delusion, and irrational 

behavior. The main question is whether these 

macroscopic psychopathologies can be linked to 

microscopic phenomena such as neural connectivity. 

From a systems view, complexity refers to the ability of a 

system to adapt to the continuously altering environment 

(93). Such adaptation is generally affected by psychiatric 

disorders, generating either random or ordered behavioral 

patterns. Considering the brain as the organ of the mind, 

the adaptability of mental functions should result from the 

underpinning neuroplasticity (94), which may be 

reasonably quantified through complexity measures at the 

microscopic level. However, lots of effort is needed to 

determine the associations between microscopic 

alterations in the neural dynamics within the brain and 

macroscopic behaviors. 

Over the last two decades, multiple analytical approaches 

have been utilized to estimate brain complexity in 

psychiatric disorders using neurophysiologic signals. 

Such approaches have been employed to understand the 

underlying neuropathological mechanisms of mental 

disorders, as well as diagnose and evaluate patients during 

the treatment process (95). However, the results of 

complexity patterns have remained relatively inconsistent 

in some disorders (e.g., schizophrenia and ADHD) due to 

a number of factors including (i) technical issues, (ii) 

large heterogeneity in psychiatric disorders, and (iii) 

interference of typical factors. First, it should be 

recognized that any measure of complexity based on its 

physical principles may contain information that is not 

necessarily comparable to another measure. For example, 

entropy-based measures are based on information theory, 

randomness, and system regularity, whereas the 

Lyapunov exponent and correlation dimension are based 

on the physical concepts of chaos (96). Furthermore, as 

mentioned in Table 1, each complexity measure has its 

own technical considerations for obtaining reliable 

results, including data length, noise level, artifacts, and 

algorithm parameterization. Second, most psychiatric 

illnesses are heterogeneous in their neuropathological 

mechanisms and clinical symptoms. As an example, the 

neuropathological backgrounds associated with positive 

symptoms and negative symptoms in schizophrenia are 

quite different (44). Finally, the pattern of complexity in 

normal aging and development should be considered 

when investigating neuropathology. Previous studies 

have reported that brain complexity increases from 

childhood to adulthood and afterwards decreases from 

adulthood to senility (9, 10). 

Challenges and future direction 

We must keep in mind that our goal of complexity 

analysis is to gain knowledge of the system (the brain) by 

observing its output signals, such as EEG, MEG, etc. 

However, this approach has its own limitations and relies 

on many assumptions about the system that may not be 

true. For example, different assumptions lead to different 

values of complexity, hence it is crucial to avoid 

generalizing the terminology of a specific measure. For 

example, some studies assume that randomness makes a 

system more complex. However, consider a simple white 

noise generator which is fully random and has a high 

degree of entropy (in all definitions of entropy) without 

being an example of a complex system. Moreover, certain 

studies assume that a periodic system is not complex, 

while we can find many complex systems with periodic 

behaviors, such as the Vander-Pole oscillator, Lorentz 

system, etc. To summarize, we must first provide a 

precise definition of complexity and what we want to 

measure. With this in mind, researchers may use the terms 

randomness, predictability, and complexity with more 

care and caution. As mentioned previously, factors such 

as data length and noise level are crucial in selecting a 

complexity measure. For example, accurate values of 

complexity with Lyapunov exponent and correlation 

dimension can be difficult to obtain due to their basic 

assumptions of long time series and high signal-to-noise 

ratio, as these assumptions may not be realistic in clinical 

settings. Conversely, Lempel-Ziv complexity may be a 

more robust measure for noisy short time series. In 

addition, while entropy-based measures such as 

approximate entropy and sample entropy are the most 

widely used methods, they actually represent irregularity 

statistics rather than the complexity of a system. 

Moreover, approximate entropy and sample entropy are 

sensitive to their computational parameters (96). 

Therefore, it is recommended to use fuzzy-based entropy 

measures, which utilize a fuzzy function instead of a 

single value of parameter. Furthermore, one of the issues 

that may be discussed in the article is hyper-parameters. 

Most comparative methods for complexity estimation 



 Brain Complexity and Psychiatric Disorders 

 Iranian J Psychiatry 18: 4, October 2023 ijps.tums.ac.ir 499 

have some hyper-parameters that can significantly change 

the results. For example, estimating the embedding 

dimension in the Lyapunov exponent and correlation 

dimension is a challenging task that is easily neglected in 

most psychiatric studies. 

 

Limitation 
Due to the vastness of the subject under discussion, it was 

not possible to carry out a systematic review. However, 

the authors tried to retrieve and review most of the studies 

in this field using a comprehensive search and their 

experience in this field. Moreover, there were limitations 

in some of the original studies, such as not meeting basic 

assumptions for measures of complexity, which are 

discussed in this article. 

 

Conclusion 
The lack of biomarkers in psychiatry has always made it 

a second-class field in medicine. Despite many attempts, 

the causes of most mental illnesses remain unknown, and 

even the precise classification of such disorders has been 

challenging. Complexity analysis may present a new 

dimension to understanding psychiatric disorders. While 

complexity analysis is still far from having practical 

applications in routine clinical settings, complexity 

science can play an essential role in comprehending the 

system dynamics of psychiatric disorders. 
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