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Abstract  
 
Objective: Dementia is a broad term referring to a decline in problem-solving abilities, language skills, memory, and 

other cognitive functions to a degree that it significantly disrupts everyday activities. The underlying cause of dementia is 
the impairment or loss of nerve cells and their connections within the brain. The particular symptoms experienced are 
contingent upon specific regions of the brain affected by this damage. In this research, we aimed to investigate the 
nonlinear dynamics of the mixed demented brain compared to healthy subjects using electroencephalogram (EEG) 
analysis. 
Method: For this purpose, EEG was recorded from 66 patients with mixed dementia and 65 healthy subjects during rest. 

After signal preprocessing, sample entropy and Katz fractal dimension analyses were applied to the preprocessed EEG 
data. Analysis of variance with repeated measures was utilized to compare the nonlinear dynamics of brain activity 
between dementia and healthy states and partial correlation analysis was employed to explore the relationship between 
EEG complexity measures and cognitive and neuropsychiatric symptoms of patients.  
Results: Based on repeated measures ANOVA, there was a significant main effect between groups for both Katz fractal 

dimension (F = 4.10, P = 0.01) and sample entropy (F = 4.81, P = 0.009) measures. Post hoc comparisons revealed that 
EEG complexity was significantly reduced in dementia mainly in the occipitoparietal and temporal areas (P < 0.05). 
MMSE scores were positively correlated with EEG complexity measures, while NPI scores were negatively correlated 
with EEG complexity measures, mainly in the occipitoparietal and temporal areas (P < 0.05). Moreover, using a KNN 
classifier, all significant complexity measures yielded the best classification performance with an accuracy of 98.05%, 
sensitivity of 97.03% and specificity of 99.16% in detecting dementia. 
Conclusion: This study demonstrated a unique dynamic system within the brain impacted by dementia that results in 

more predictable patterns of cortical activity mainly in the occipitoparietal and temporal areas. These abnormal patterns 
were associated with patients' cognitive capacity and neuropsychiatric symptoms. 
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Dementia is a progressive and complex neurological 

disorder that impairs cognitive function and memory, 

affecting an individual's ability to execute daily 

activities. It is characterized by a decline in cognitive 

function beyond what might be expected from normal 

aging (1). Dementia is a prevalent condition worldwide, 

with an increasing number of cases as the global 

population ages. Based on the World Health 

Organization (WHO), around 50 million people were 

living with dementia in 2020, and this number is 

expected to triple by 2050 (2). The pathology of 

dementia involves the cumulating of irregular protein 

deposits in the brain, causing nerve cell damage and 

disrupting communication between brain cells (3). Two 

most prevalent types of dementia are Alzheimer's 

disease, characterized by the buildup of tau tangles and 

amyloid plaques in the brain, and vascular dementia, 

caused by decreased blood flow to the brain leading to 

cell damage (4). Other types of dementia, such as Lewy 

body dementia and frontotemporal dementia, have 

distinct pathological features (5). Understanding the 

underlying pathology of dementia is crucial for 

developing effective treatments and interventions to 

control the condition and enhance the quality of life for 

people affected by this challenging disorder (6). 

As mentioned, vascular dementia and Alzheimer's 

disease are two prevalent types of dementia that pose 

significant challenges to the aging population 

worldwide. Alzheimer's disease is the most prevalent 

form of dementia, accounting for around 60-70% of all 

cases (7), while vascular dementia ranks as the second 

most common type (8). Neuropathologically, 

Alzheimer's disease primarily affects the hippocampus 

and cerebral cortex, whereas vascular dementia is 

associated with small and large vessel disease, impacting 

various brain regions depending on the location of 

vascular damage (9). Despite their distinct etiologies, 

vascular dementia and Alzheimer's disease share some 

common symptoms such as memory loss, executive 

dysfunction, and impaired cognitive abilities (10). Both 

conditions can exhibit behavioral changes, language 

difficulties, and challenges in daily functioning, making 

accurate differential diagnosis crucial for appropriate 

management and care planning (11). Early detection and 

intervention are vital in enhancing outcomes and quality 

of life for individuals affected by these debilitating 

neurodegenerative disorders (12). 

Understanding and analyzing electroencephalogram 

(EEG) oscillations is paramount in unraveling the 

complexities of neurological disorders, particularly 

dementia (13-16). These brainwave patterns provide 

valuable information regarding the functional 

connectivity and activity of various brain regions (17), 

shedding light on how neural circuits are affected in 

conditions such as dementia (18). By examining the 

specific frequency bands and coherence of EEG 

oscillations, researchers can uncover disruptions in 

neural synchrony and communication that are 

characteristic of neurodegenerative diseases (19). In 

dementia, alterations in EEG oscillations, such as 

disruptions in alpha and beta band activities, have been 

associated with cognitive decline and memory 

impairments (20). Detecting and interpreting these 

aberrant oscillatory patterns can aid in the early 

diagnosis and monitoring of dementia progression, 

enabling clinicians to implement timely interventions 

and personalized treatment strategies (21, 22). Utilizing 

EEG oscillations as biomarkers not only enhances our 

understanding of the underlying pathophysiology of 

neurological disorders (23, 24) but also holds promise 

for improving diagnostic accuracy and developing 

targeted therapies for effectively managing conditions 

like dementia (25, 26). Meanwhile, EEG complexity is a 

measure that quantifies the intricate structure and 

dynamics of brain activity captured in 

electroencephalogram recordings (27). It provides 

insights into the richness and diversity of neuronal 

interactions occurring in the brain during different 

cognitive states and tasks (28). High EEG complexity 

indicates a more diverse and flexible neural network, 

capable of rapid information processing and integration, 

while low complexity may suggest a more rigid or 

compromised brain function (19). Al-Nuaimi et al. (29) 

utilized three different complexity measures including 

lempel-ziv, Tsallis entropy, and fractal dimension to 

quantify EEG changes in Alzheimer’s disease. They 

revealed a significant reduction in the complexity of 

EEG subbands among patients. Hogan and colleagues 

showed that people with dementia had lower EEG 

entropy values (30). Houmani et al. found that EEG 

entropy values were slightly lower in Alzheimer's 

patients compared to healthy individuals (31). Recent 

review articles also confirm the findings of these studies 

(13, 32, 33). However, small sample sizes, imbalance 

between the studied groups, uncertainty surrounding the 

EEG analysis method, and the use of entropy measures 

alone are among the limitations of most of these studies. 

Although previous studies have analyzed EEG 

complexity in dementia and have generally shown 

reduced EEG complexity in different brain regions in 

dementia (13, 32, 33), they face important limitations. 

Almost all previous studies have used only one measure 

of complexity, and some of them have not met the 

prerequisites for using these measures, such as the length 

of the EEG signal under analysis, which could confound 

the validity of the findings. Also, some studies have 

examined a limited sample size. Others have not 

investigated the cognitive correlates of brain complexity. 

Therefore, in this study, we try to conduct a 

comprehensive study with a sufficient sample size, using 

several nonlinear dynamic analysis methods, and 

measuring possible correlations between these nonlinear 

measures and cognitive performance of patients with 

mixed dementia. 
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Materials and Methods 
The study was done following the ethical guidelines 

outlined in the Declaration of Helsinki (1996) and 

adhering to the current Good Clinical Practice 

guidelines. Anonymized subject data was used 

exclusively for the purpose of the research project. This 

study was approved by the Academic Council and 

Bioethics Committee of Pirogov Russian National 

Research Medical University (Protocol number 10 of 

2023-06-28). All subjects (the patients and their 

guardians) signed written informed consent forms for 

entering the research project, and the utilization of 

medical data, and publications of the results. 
 

Participants 

Between September 2021 and October 2023, we 

performed a retrospective review of the records of 

patients in two private neurology clinics who underwent 

EEG measurements with the same EEG device (Nihon 

Kohden, Neurofax EEG-1200) under similar conditions 

(a quiet room, with the patients seated by experienced 

operators). Our study focused on individuals referred to 

the clinic during that period. We included EEG signals 

of patients with dementia who met the established 

criteria for diagnosis of mixed dementia (vascular 

dementia and another neurodegenerative disease 

especially Alzheimer's disease), as evaluated by skilled 

neurosurgeons. Out of the initial pool of 113 EEGs from 

patients with mixed dementia who had recorded EEG 

data, 47 patients with mixed dementia were excluded 

due to poor EEG recordings, and overlapping or 

probable diagnoses. Therefore, we included EEG signals 

from 66 patients with mixed dementia (average age of 

76.54 ± 10.72 years, ~69% male) in the study. In 

addition, healthy subjects in the same age range were 

invited to participate in this research through 

advertisements in local newspapers and also referrals 

from the acquaintances of the patients. Their physical 

and mental health conditions were confirmed through 

clinical interviews conducted by both a neurologist and a 

psychiatrist. Hence, 65 healthy aging controls (75.05 ± 

9.91 years old, ~75% Male) were also recruited in our 

study. 
 

EEG Recording and Preprocessing 

EEG was captured through 19 Ag/AgCl disc scalp 

electrodes placed according to the international 10-20 

system (Fp2, Fp1, T5, Fz, C3, F3, P3, F4, F7, T6, F8, 

Cz, C4, Pz, T4, P4, T3, O1, and O2). Two additional 

electrodes A1 and A2 were placed on the earlobes as 

references. Electrode impedance was kept below 5 kΩ 

during signal recording. A band-pass filter was set at 

0.5-70 Hz during the EEG recording and the sampling 

frequency was set at 512 Hz. The EEG data were 

captured continuously for 10 minutes while the 

individuals rested comfortably in a dimly lit, silent room, 

with their eyes open. The first minute of EEG signals 

was removed due to the adaptation of the subject to the 

environment. 

While collecting EEG signals, they can become 

unintentionally corrupted by various forms of noise and 

artifacts. These unwanted disturbances stem from a 

range of sources, both biological and non-biological in 

nature. Examples include movements and eye blinks, 

heartbeat, muscular activities, channel noise, and power 

line interference. Consequently, the recorded EEG 

signals may not accurately reflect the genuine neural 

activity occurring within the brain. To address this issue 

and prevent misleading analysis, it is crucial to 

incorporate an EEG signal preprocessing phase. This 

preprocessing stage aims to attenuate noise and 

eliminate disruptive artifacts, ensuring that the resulting 

signals primarily represent the pure brainwave activity 

for subsequent accurate analysis. To process the EEG 

signals in this study, a proposed pipeline for 

preprocessing was utilized, employing the EEGLAB 

toolbox found in the MATLAB software. Initially, the 

EEG data were re-referenced to the average of A1 and 

A2 channels as reference points. Subsequently, all the 

aligned EEG signals underwent a high-pass filtering 

process with a cutoff frequency of 1 Hz, followed by 

low-pass filtering with a cutoff frequency of 50 Hz. This 

particular approach effectively mitigates muscular 

activity and power line interference, as these artifacts 

typically tend to exhibit higher frequency power. To 

address other forms of artifacts, the filtered signals were 

subjected to a careful visual inspection by skilled 

neurologists. Finally, a 60-second clean EEG was 

selected for each subject for further analysis. 
 

Nonlinear Dynamic Analyses 

In this study, to verify the findings regarding EEG 

complexity in patients with dementia, two different 

complexity measures were extracted from all 19 

preprocessed channels: Katz fractal dimension and 

sample entropy. In the following, these measures and 

how they are calculated are explained. 

Katz fractal dimension. It is an algorithm for calculating 

the complexity of a signal. This feature is computed 

through calculating the distance between points along 

the signal and then calculating the ratio of the logarithm 

of the total distance to the logarithm of the number of 

points. The Katz fractal dimension feature can be 

computed through the following relation (34): 

 

 
 

D denotes the Katz fractal dimension feature; N 

indicates the count of samples in the signal; L denotes 

the total length of the signal, and L0 is the maximum 

distance between the initial sample and other samples. 

The Katz fractal dimension is a useful tool in signal 

processing and can be utilized for a range of 

applications, including image processing, speech 

recognition, and biomedical signal analysis. Higher 

values of D indicate a more complex signal with a higher 
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degree of irregularity or roughness, while lower values 

of D show a simpler signal with less irregularity or 

roughness. 

Sample entropy. It is an index of the irregularity of a 

signal based on the idea of comparing the similarity 

between all pairs of subsequences of a given length m in 

a time series. It is calculated using the following 

equation (35): 

 

 
 

where m represents the embedding dimension; r is the 

tolerance or similarity criterion, and Cm(r) denotes the 

number of pairs of subsequences that have a distance 

less than or equal to r. The Euclidean distance criterion 

was used to calculate the distance. According to 

previous EEG studies (36, 37), m = 2 and r = 0.2×SD 

were set, where SD represents the standard deviation of 

the signal. A higher value of SE indicates a more 

irregular or complex time series with a higher degree of 

entropy, while a lower value of SE demonstrates a 

smoother time series with less entropy. 
 

Clinical and Cognitive Evaluation 

The mini-mental state examination (MMSE) was utilized 

for cognitive evaluation of the patients. It has 19 items 

with 11 domains covering recall, attention/calculation, 

repetition, orientation, naming, registration, verbal and 

written comprehension, construction and writing. The 

MMSE is a very common tool to evaluate cognitive 

states in patients with dementia (38). Various studies 

have confirmed the reliability and validity of the MMSE 

for the evaluation of cognitive states in dementia patients 

and the diagnosis of dementia. A meta-analysis study 

showed that in memory clinical settings, the sensitivity, 

specificity, and positive predictive value of the MMSE 

were 79.8%, 81.3% and 86.3%, respectively (39). 

Moreover, psychological and behavioral symptoms of 

the patients were assessed through the Neuropsychiatric 

Inventory (NPI). This tool supplies quantitative 

evaluation for 12 domains, including dysphoria, 

euphoria, apathy, hallucination, delusion, anxiety, 

aggression, irritability, disinhibition, appetite change, 

aberrant motor activities, and sleep change (40). 
 

Statistical Analysis 

SPSS version 21 was utilized for statistical analyses. 

After calculating the nonlinear measures, two-way 

repeated measures analysis of variance (ANOVA) with 

Huynh-Feldt correction for sphericity was employed to 

compare brain complexity between dementia patients 

and healthy controls across the EEG channels. An 

independent t-test was utilized to investigate between-

group differences for demographic and complexity 

measures between the healthy and patient groups. The 

relationships between the EEG complexity measures and 

the MMSE and NPI scores were investigated through 

partial correlation analysis, controlling for age. 

Statistical significance needed a P-value < 0.05.  

Furthermore, a classification model was developed 

through K-nearest-neighbors (KNN) to classify dementia 

patients and healthy controls. KNN is a non-parametric 

classification algorithm that is commonly utilized in 

machine learning. The algorithm is based on the idea 

that samples that are close to each other in the feature 

space are likely to belong to the same class. Given a new 

data point, the KNN technique searches for the K nearest 

neighbors in the training set and assigns the class label 

that is most common among them. Mathematically, this 

can be expressed as Equation 3 (41): 

 

 
 

where  is the predicted class label; yi indicates the class 

label of the i-th nearest neighbor, and K denotes the 

count of neighbors taken into account. The separation 

between the samples is measured through the Euclidean 

rule: 

 

 
 

where xik and xjk are the k-th feature values of the i-th 

and j-th data points, respectively. The choice of K is a 

hyperparameter that can be tuned using cross-validation. 

Small values of K can result in overfitting, while a large 

value of K can lead to underfitting. The KNN algorithm 

is simple and easy to implement, but it may be 

computationally overpriced for large datasets. In this 

work, K = 3 was considered. 

 

Results 
Baseline and clinical features of the subjects are reported 

in Table 1. As shown, the groups did not differ in 

gender, age, and education (P > 0.05). Subjects with 

dementia had significantly lower total MMSE scores 

than healthy subjects (P < 0.001).  
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Table 1. Baseline and Clinical Characteristics of Patients with Dementia and Healthy Controls. 
 

Characteristics Dementia group (n = 66) Healthy group (n = 65) P-value 

Age (year) 76.54 ± 10.72 75.05 ± 9.91 0.410 

Gender (% male) 69.70% 75.38% 0.622 

Education (year) 11.89 ± 4.16 12.36 ± 4.95 0.557 

Duration of illness (year) 2.54 ± 1.45   

MMSE total score 18.21 ± 4.29 29.30 ± 1.09 < 0.001 

NPI total score 13.89 ± 7.58   

NPI-dysphoria 1.64 ± 1.89   

NPI-euphoria 0.22 ± 0.37   

NPI-apathy 0.25 ± 0.40   

NPI-hallucination 0.46 ± 0.97   

NPI-delusion 0.85 ± 1.20   

NPI-anxiety 1.29 ± 1.32   

NPI-aggression 1.14 ± 1.56   

NPI-irritability 1.48 ± 0.96   

NPI-disinhibition 0.87 ± 1.17   

NPI-appetite change 2.00 ± 1.75   

NPI-aberrant motor activities 0.92 ± 1.23   

NPI-sleep change 1.91 ± 1.84   

 
Based on the repeated measures ANOVA, there was a 

significant main effect between groups for both Katz 

fractal dimension (F = 4.10, P = 0.01) and sample 

entropy (F = 4.81, P = 0.009) measures. All channels 

had significant within-subject effects and the interaction 

between group and electrodes was significant for both 

Katz fractal dimension (F = 4.05, P = 0.02) and sample 

entropy (F = 5.23, P = 0.002) measures. Post hoc 

comparisons revealed that dementia patients had 

significantly lower values of Katz fractal dimension at 

P3, O1, P4, O2 and Pz channels (P < 0.05), and lower 

values of sample entropy at F4, P3, T5, Fz, T6, O2, P4, 

O1, Cz and Pz channels (P < 0.05), as displayed in 

Figure 1. Furthermore, Table 1 shows the relationship 

between EEG complexity measures and cognitive and 

clinical scales (i.e., MMSE and NPI total scores). It 

should be noted that only statistically significant 

correlation coefficients are summarized in this table. As 

shown, MMSE scores were positively correlated with 

EEG complexity measures, whereas NPI scores were 

negatively correlated with EEG complexity measures 

mainly in the occipitoparietal and temporal areas (P < 

0.05).

 
Table 2. Significant Correlations between EEG Channels and Mini-Mental State Examination (MMSE) 

Scores and Neuropsychiatric Inventory (NPI) Scores (P < 0.05) Controlled for Age 
 

 Sample entropy 

 T5 T6 P3 P4 O1 O2 Pz 

MMSE score 0.42 0.41 0.48 0.49 0.50 0.47 0.48 

NPI score -0.38 -0.40 -0.36 -0.39 -0.35 -0.37 -0.38 

 Katz fractal dimension 

 T4 C4 T6 P4 O1 O2 Pz 

MMSE score 0.41 0.38 0.51 0.55 0.62 0.64 0.58 

NPI score -0.46 -0.40 -0.53 -0.56 -0.55 -0.54 -0.55 
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Figure 1. Comparison of Averaged Values of Sample Entropy and Katz Fractal Dimension Measures 
between Patients with Dementia and Healthy Subjects. The Asterisks Show Statistically Significant 

Differences. 
 
 

Table 3 shows the classification accuracies obtained 

through the KNN model for dementia diagnosis using 

EEG complexity measures. For classification, 

complexity data from all the individuals were utilized to 

build and test various classification models. To this end, 

75% of the EEG features were randomly allocated to 

classification modeling (training), and the remaining 

25% of the features were reserved for model validation 

(testing). The outputs of the 20-time running of the KNN 

were averaged to determine the final classification 

results. To prevent data leakage from testing data to the 

training process, finding significant features were 

conducted separately in the training data of each run. 

According to Table 3, all complexity measures yielded 

an accuracy of 92.13% in detecting dementia with 

87.36% sensitivity and 96.81% specificity. However, 

significant features led to better classification 

performance (95.78% accuracy for significant entropy 

measures and 96.44% accuracy for significant fractal 

measures). However, all significant complexity 

measures yielded the best classification performance 

with an accuracy of 98.05%, sensitivity of 97.03% and 

specificity of 99.16% in detecting dementia. 
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Table 3. Classification Accuracies between Dementia and Healthy Groups Obtained by the K-Nearest-
Neighbors (KNN) Model 

Features Accuracy (%) Sensitivity (%) Specificity (%) 

All data 92.13 ± 4.28 87.36 ± 4.11 96.81 ± 4.57 

Significant entropy features 95.78 ± 2.49 93.90 ± 2.97 97.52 ± 2.85 

Significant fractal features 96.44 ± 3.05 95.25 ± 3.00 97.60 ± 2.98 

All significant features (entropy + fractal) 98.05 ± 2.34 97.03 ± 2.16 99.16 ± 2.20 

 

Discussion 
The link between the EEG variables, especially those 

related to slow activity levels, and the severity of 

dementia is widely recognized (42, 43). This research 

examines two different EEG complexity measures 

derived from different nonlinear analytical techniques, 

aiming to comparing them to identify the most effective 

parameter for potential use in clinical settings. Our 

findings showed that the EEG complexity was 

significantly reduced in dementia mainly in the 

occipitoparietal and temporal areas, which is consistent 

with previous findings (13, 19, 44). Seker et al. 

compared the permutation entropy of EEGs recorded 

from 85 Alzheimer's patients and 85 healthy controls 

and found that EEG complexity is reduced in patients 

(19). Yang et al. compared the multiscale entropy of 

EEGs recorded from 15 Alzheimer's patients and 15 

healthy controls and found that EEG complexity is 

reduced in patients on short-time scales (45). Labate et 

al. (46) and McBride et al. (47) also reported similar 

results comparing Alzheimer's patients and healthy 

subjects with a low sample size (15 subjects per group) 

using sample entropy and Lempel-Ziv complexity. 

However, it should be noted that the previous findings 

were mainly observed on the population of Alzheimer's 

patients and other types of dementia, such as 

frontotemporal dementia, while mixed dementia has 

received less attention in research studies. This 

significant finding suggests the existence of unique 

dynamic systems within the brain impacted by dementia, 

lending support to the disconnectivity theory that forms 

the basis of dementia neuropathology (48, 49). It also 

offers additional understanding of the atypical neural 

connectivity present in this condition. Actually, reduced 

EEG complexity in individuals with dementia could 

signify a shift in brain activity towards more predictable 

patterns (45). Our findings indicated a significant 

correlation between complexity measures in 

occipitoparietal EEG electrodes with MMSE scores. 

This result aligns with previous studies that linked EEG 

alterations in the posterior brain areas to cognitive 

deterioration in individuals with Alzheimer's disease (45, 

50, 51). Indeed, EEG complexity was positively 

correlated with patients' cognitive capacity and 

negatively correlated with patients' neuropsychiatric 

symptoms. Previous studies showed that the decrease in 

complexity was found to be associated with cognitive 

dysfunction, particularly affecting language and memory 

abilities, in individuals diagnosed with frontotemporal 

dementia (52). Understanding the neuropsychiatric 

connections of EEG complexity could offer 

understanding on how brain function in distinct areas 

influences the behavioral and psychological 

manifestations of dementia. These discoveries might 

impact the application of EEG complexity examination 

as an uncomplicated clinical method to evaluate the 

intensity of neuropsychiatric symptoms among 

individuals with dementia. 

Limited research has investigated the nonlinear 

characteristics of EEG signals in individuals with 

dementia. Traditional EEG power assessments in these 

patients commonly reveal a slowing EEG pattern 

characterized by elevated delta band power and 

diminished alpha activity (42). The extracted nonlinear 

EEG features using the KNN classifier could achieve an 

average accuracy of 98% in dementia diagnosis, which 

is much higher than previous studies that utilized linear 

features (53, 54). According to the obtained results, 

nonlinear features of EEG signals emerged as a 

promising approach for detecting dementia. EEG is a 

technique that captures the electrical activity of the 

brain. The signals obtained from EEG are intricate and 

nonlinear, making it difficult to explore them through 

traditional linear approaches (55). Nonlinear analysis of 

EEG signals involves the use of mathematical 

techniques that can capture the complex and dynamic 

nature of the brain's electrical activity. Nonlinear 

features extracted from EEG signals can provide 

valuable information about the brain's functional 

connectivity, complexity, and synchronization, which 

are not easily detectable using linear methods (56). 

Overall, the nonlinear nature of EEG signals provides a 

unique opportunity for researchers and clinicians to gain 

a deeper understanding of the brain's complex dynamics 

and develop more effective strategies for diagnosis and 

monitoring of dementia (57).  

 

Limitation 
Despite the strengths of the current study, including a 

relatively suitable sample size, investigating the 

relationship between nonlinear EEG indicators and the 

cognitive and clinical level of patients, and achieving a 

high accuracy in diagnosing dementia through EEG 

analysis, there are also limitations that should be pointed 
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out. First, this is a cross-sectional study and therefore the 

findings cannot be considered definitive. Longitudinal 

studies with appropriate design are needed to confirm 

the findings of this study. Second, at the time that the 

EEG tests were performed, the dementia patients were 

taking medications that may have affected the pattern of 

their brain signals, thereby influencing the study's 

findings. Third, we investigated mixed dementia in this 

study, while other types of dementia are also common 

and should be further investigated in future studies. 

 

Conclusion 
In summary, this study demonstrated a unique dynamic 

system within the brain impacted by dementia that 

results in more predictable patterns of cortical activity 

mainly in the occipitoparietal and temporal areas. These 

abnormal patterns were associated with patients' 

cognitive capacity and neuropsychiatric symptoms. Our 

machine learning model could achieve a high accuracy 

of 98% for dementia diagnosis using these 

abnormalities, which demonstrates the importance of 

EEG complexity analysis for studying brain activity in 

patients with mixed dementia. Overall, evaluating the 

complexity of EEG signals using nonlinear approaches 

of entropy and fractal dimension could serve as a 

straightforward and dynamic indicator to gauge the 

cognitive and neuropsychiatric impact of dementia. The 

potential creation of a convenient EEG monitoring tool, 

possibly utilizing dry EEG electrodes, could enable real-

time monitoring of brain activity in superficial brain 

regions. This tool could offer valuable clinical insights 

for the precise evaluation of neuropsychiatric 

manifestations in individuals with dementia. Future 

longitudinal studies with large populations of patients 

with different types of dementia should be conducted to 

confirm the findings of the present study. 
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