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Abstract  
 
Objective: Understanding neural mechanisms underlying cognitive workload is crucial for advancing our knowledge of 

human cognition and mental processes. In this study, we utilized electroencephalography (EEG) analysis to investigate 
brain activity associated with varying mental cognitive workloads from a psychological perspective. 
Method: We employed a publicly accessible EEG dataset consisting of a cohort of 36 healthy volunteers (75% female), 

aged 18 to 26 years, while the participants were at rest or engaged in an arithmetic task to explore mental cognitive 
workload. After preprocessing to reduce noise and various artifacts and to obtain a clean signal for every subject, 
functional connectivity and complexity features were calculated from EEGs through the coherence and permutation 
entropy algorithms, respectively. Then, repeated measures analysis of variance (ANOVA) was conducted to assess the 
differences in complexity and connectivity measures across various brain regions between the rest and task states. 
Results: Brain sites showed significant within-subject effects, and the interaction between states and channels was 

significant for connectivity values (F = 3.68, P = 0.034). Post hoc comparisons indicated that FP1-F7, FP1-F8 and FP1-
Fz connectivity were significantly lower during the task state compared to the rest state (P < 0.05). Moreover, F4-P3, F4-
P4, FP1-O1, FP2-O2, F3-O1, F4-O1, F8-O1, C4-O1, F3-O2, F4-O2, F7-O2, F8-O2, Fz-O1, Fz-O2, Cz-O1 and Fz-P4 
connectivity were significantly higher during the arithmetic task state (P < 0.05). Furthermore, brain sites showed 
significant within-subject effects and the interaction between states and channels was significant for entropy values (F = 
3.50, P = 0.041). Post hoc comparisons indicated that the permutation entropy was significantly higher in the FP1, T3, 
T4, P4 and Pz channels during the arithmetic task compared to the rest state (P < 0.05). 
Conclusion: During arithmetic tasks, the increased connectivity in the frontoparietal and frontooccipital networks and 

heightened complexity in the prefrontal, temporal and parietal lobes reflect the collaborative engagement of brain areas 
specialized in numerical processing, attention, working memory, cognitive control, and visual-spatial cognition. These 
changes in connectivity and complexity facilitate the integration of multiple cognitive processes essential for effective 
arithmetic problem-solving. 
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Understanding the intricate workings of the human 

brain during various cognitive tasks has been a 

longstanding endeavor in neuroscience. The ability to 

elucidate how different mental activities elicit distinct 

patterns of brain activity holds profound implications for 

various fields ranging from education to clinical 

psychology (1). Understanding the dynamic interplay 

between brain activity and cognitive workload is 

essential for unraveling the neural mechanisms 

underlying human cognition (2). Cognitive workload 

refers to the mental effort exerted during tasks, 

encompassing a spectrum from routine activities to 

complex problem-solving scenarios. The brain's ability 

to adaptively allocate resources in response to varying 

cognitive demands underscores its complexity and 

efficiency in supporting cognitive functions (3, 4). 

Thus far, assessments of cognitive workload have been 

divided into two distinct types: subjective and objective 

measures. Subjective measures depend on operators' 

personal perceptions and self-assessment, commonly 

employing questionnaires such as the Subjective 

Workload Assessment Method to evaluate mental 

workload. Despite their ease of use, these tools are 

criticized for their lack of objectivity, real-time 

feedback, and precise outcomes (5). In contrast, 

objective measures predominantly utilize task 

performance data and diverse biological signals, aiming 

to reduce task interference and overcome the limitations 

associated with subjective methods (6). Recent 

advancements in neuroimaging techniques, such as 

functional magnetic resonance imaging (fMRI), 

electroencephalography (EEG), magnetoencephalography 

(MEG), and near-infrared spectroscopy (NIRS), have 

revolutionized our ability to investigate brain activity 

with high spatial and temporal resolution (7, 8). These 

technologies enable researchers to map neural networks 

and identify specific brain regions involved in different 

cognitive processes (9, 10). For example, studies 

utilizing fMRI have shown that tasks requiring sustained 

attention activate the dorsal attention network involving 

the frontal and parietal cortices, whereas memory tasks 

recruit the hippocampus and surrounding medial 

temporal lobe structures (11, 12), reflecting their roles in 

executive functions and information processing (13). 

Commonly utilized physiological signals fall into 

categories such as heart rate, respiration, 

electroencephalogram (EEG), eye tracking, and 

electromyogram (14). Among these, EEG is popular 

because of its convenience, excellent temporal 

resolution, availability, safety, and affordability (15, 16). 

EEG allows for the measurement of electrical activity in 

the brain, offering real-time monitoring and detailed 

assessment of cognitive processes (17-19). Therefore, 

our study concentrates on the comparison of different 

mental workload states using EEG-based methods. 

Different cognitive tasks elicit unique EEG signatures, 

such as theta and alpha rhythms, which vary depending 

on the nature of the task (20). Tasks requiring higher 

cognitive demand, such as problem-solving or decision-

making, typically show increased frontal cortex 

activation in EEG studies (21). EEG studies have 

highlighted specific oscillatory patterns, such as theta 

and gamma oscillations, during memory encoding and 

retrieval processes (22-25). Attentional processes are 

often associated with modulations in the alpha band, 

reflecting changes in cognitive workload and attentional 

allocation (26, 27). Furthermore, multitasking scenarios 

are characterized by fluctuations in theta and alpha band 

activity, indicating varying levels of cognitive load and 

task-switching demands (28). Prolonged cognitive tasks 

lead to changes in EEG patterns, such as increased theta 

activity and reduced alpha power, indicating cognitive 

fatigue (29). In addition, emotional stimuli influence 

EEG patterns, with distinct changes in alpha asymmetry 

and gamma oscillations depending on emotional valence 

and arousal levels (30). EEG studies have also identified 

age-related changes in brain activity during cognitive 

tasks, reflecting alterations in neural efficiency and 

cognitive decline (31). These findings illustrate the 

diverse applications of EEG in understanding brain 

activity across different cognitive tasks and conditions, 

offering insights into neural mechanisms underlying 

human cognition.  

The field has progressed towards understanding how 

cognitive workload modulates functional connectivity 

between brain regions. Functional connectivity analyses 

reveal synchronized activity patterns among distant brain 

areas, providing insights into network dynamics during 

task performance (32). For instance, increased cognitive 

load has been associated with enhanced connectivity 

within task-specific networks and decreased connectivity 

between task-negative and task-positive networks (33). 

EEG analysis reveals that working memory tasks 

involve increased theta and alpha band synchronization, 

especially in frontal and parietal regions (34). Moreover, 

investigations into brain activity across different 

cognitive workloads have highlighted the dynamic 

nature of neural networks involved in task performance. 

Variations in workload intensity and complexity often 

result in corresponding changes in neural recruitment 

patterns, underscoring the brain's adaptive capacity to 

meet varying cognitive demands (35). 

Previous studies have relatively focused on the analysis 

of EEG frequency bands, and little research has been 

done on EEG connectivity and complexity 

characteristics under different mental workloads. This is 

while the integration of connectivity and complexity 

analyses in EEG studies offers a promising avenue for 

advancing our understanding of brain activity across 

varied cognitive workloads. By examining how different 

brain regions communicate and synchronize during tasks 

of differing complexity, researchers can elucidate the 

underlying neural networks that support cognitive 

processes. This paper aims to delve into recent findings 

using these analytical approaches, exploring how 
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connectivity patterns and complexity measures in EEG 

signals provide insights into the dynamic nature of 

cognitive workload. 

 

Materials and Methods 
This section presents a comprehensive outline of the 

methods and techniques utilized to meet the research 

goals. It details the dataset selection and analysis 

approaches employed in this study. Each phase is 

systematically laid out, highlighting key variables, tools, 

and statistical methods applied. It should be noted that 

this research was approved through the Institutional 

Ethics Committee of the UCSI University (Kuala 

Lumpur, Malaysia). 
 

 

EEG Dataset 

In this study, we employed a publicly accessible EEG 

dataset to explore mental cognitive workload (36). A 

cohort of 36 healthy volunteers (75% female), aged 18 to 

26 years, with normal vision and no history of cognitive 

disorders, mental illness, or learning disabilities, 

participated in the investigation. Participants performed 

an arithmetic task involving continuous subtraction 

while EEG data was collected. EEG signals were 

acquired using Ag/AgCl electrodes placed on the scalp 

according to the 10-20 system. 19 specific electrode 

positions were selected: FP2, FP1, F4, F3, Fz, F7, C3, 

F8, Cz, C4, O1, T3, O2, T5, T4, T6, P3, P4, Pz. A 

reference was established by connecting channels to A1 

and A2 positioned on the earlobes. Electrode impedance 

was kept below 5 kOhm, and data were sampled at a rate 

of 500 Hz. To minimize noise and artifacts, the EEG 

signals were filtered using a 45 Hz low-pass filter, a 0.5 

Hz high-pass filter, and a 50 Hz notch filter. Prior to 

EEG recording, participants underwent a relaxation 

period in a resting state, and during the arithmetic task 

they silently counted numbers without verbalizing them. 

Each trial began with the verbal delivery of a 4-digit 

number (the minuend) followed by a 2-digit number (the 

subtrahend), such as 4753 minus 17 or 3141 minus 42. 

Mental arithmetic tasks are widely acknowledged as a 

reliable means of inducing stress in experimental 

contexts. Engaging in continuous subtraction tasks for 

15 minutes is associated with inducing psychosocial 

stress. As a result, the protocol required considerable 

cognitive effort from the participants. During EEG 

recording, participants were seated in a dimly lit, 

soundproof room, comfortably reclined in an armchair. 

The recording session commenced with a three-minute 

adaptation phase, followed by a three-minute resting-

state session with closed eyes, and concluded with a 

four-minute period of performing the arithmetic task. 

Figure 1 illustrates the timeline of the recording 

procedure. 

 

 
 

 
Figure 1. The Time Course of the Electroencephalogram Recording Procedure To Explore Mental 

Workloads (36) 
 

 

Data Preprocessing 

We adhered to the preprocessing recommendations 

specified in the literature accompanying the dataset. This 

process included several key steps: (I) We applied a 

high-pass filter set at 1 Hz to the raw data, which helped 

to remove low-frequency noise from sources such as 

scalp sweat, head movements, and electrode 

connections, as well as gradual changes in the EEG 
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signal over time; (II) A 50 Hz notch filter was used to 

eliminate electrical interference from external sources 

like power lines, which can introduce electromagnetic 

noise into the EEG recordings; (III) We implemented 

Artifact Subspace Reconstruction (ASR) to 

automatically detect and eliminate noise or artifacts from 

the EEG data; (IV) The data was then re-referenced to an 

average reference, shifting from a fixed reference to this 

method—this approach is favored by some researchers, 

especially when electrode placement covers a significant 

area of the scalp. We emphasized the use of ASR due to 

the presence of notable amplitude artifacts in the 

datasets. ASR is an adaptive technique for removing 

high-amplitude disturbances. Finally, 10 epochs of 10 

seconds of clean signal for each individual were selected 

for subsequent analyses. The preprocessing steps were 

carried out using the EEGLAB toolbox within the 

MATLAB environment (version 2015b). 
 

Connectivity Analysis 

Brain connectivity elucidates the network of structural 

and functional connection across different brain areas. 

These functional connections among brain areas depend 

on neural oscillations, and might vary in different 

workload conditions including rest and task (37). 

Coherence is a well-known mathematical algorithm to 

evaluate the amount of similar neural oscillatory activity 

between two or more brain sites. The coherence 

algorithm in EEG connectivity analysis is a fundamental 

method used to quantify the degree of synchronization in 

neural activity between different brain regions. It 

provides insight into how strongly two or more brain 

areas oscillate in harmony, indicating functional 

connectivity (38). Essentially, coherence measures the 

consistency of phase relationships between EEG signals 

across channels, offering a mathematical approach to 

understanding the coordinated activity of neuronal 

networks (39). By examining these patterns, researchers 

can discern meaningful correlations in brain function 

and how they may change under various conditions or 

cognitive tasks. This method plays a crucial role in 

advancing our understanding of brain dynamics and their 

implications for cognitive processes and neurological 

disorders. 
 

Complexity Analysis 

Complexity EEG analysis refers to the study of EEG 

signals using methods that assess the intricacies and 

patterns within brain activity (40). Unlike traditional 

EEG analysis that focuses on basic features like 

amplitude and frequency, complexity analysis delves 

deeper into the non-linear dynamics of neural signals. It 

explores how EEG signals exhibit complex behaviors 

such as fractal patterns, self-similarity, and irregular 

fluctuations that traditional methods may overlook (41, 

42). This approach provides insights into the richness 

and adaptability of brain function, offering a more 

nuanced understanding of neurological processes and 

their variations across different states, such as 

wakefulness and sleep or during cognitive tasks. 

Complexity EEG analysis is pivotal in uncovering the 

underlying mechanisms of brain function and in 

developing more refined diagnostic and therapeutic 

approaches for neurological disorders. 

In this study, permutation entropy is utilized to measure 

EEG complexity in different states. Permutation entropy 

is a measure of the complexity of a time series based on 

the idea of quantifying the frequency of occurrence of 

ordinal patterns in the time series. An ordinal pattern is a 

sequence of values that preserves the order of the 

original time series (43). Permutation entropy is 

calculated by first dividing the time series into 

overlapping windows of a fixed length. Then, for each 

window, the ordinal pattern of the time series is 

computed and transformed into a symbolic sequence. 

The frequency of occurrence of each symbolic sequence 

is then calculated and used to compute the permutation 

entropy feature (44). A higher permutation entropy value 

indicates a more complex time series with a higher 

degree of irregularity or unpredictability, while a lower 

value indicates a simpler time series with less 

irregularity or unpredictability (45). We chose this 

algorithm to calculate EEG complexity because of its 

sensitivity to temporal patterns, robustness to noise, 

simple interpretation, nonparametric nature, and 

computational efficiency. 
 

Statistical Analysis 

As data distribution was normal according to the 

Shapiro-Wilk test, we employed repeated measures 

analysis of variance (ANOVA) to assess the differences 

in complexity and connectivity measures across various 

brain regions between the rest and task states. The 

between-subject factor was the group, while the within-

subject factors included 19 EEG channels. Whenever 

necessary, we applied the Bonferroni correction to 

account for multiple comparisons. Additionally, we 

utilized paired-samples t test to identify the EEG 

channels where complexity or connectivity significantly 

differed between the two states as the post-hoc 

comparison. In cases where the assumption of sphericity 

was breached, as determined by Mauchly’s test, we 

reported the estimates based on the Greenhouse-Geisser 

correction. These analyzes were performed separately 

for each of the connectivity and complexity features. All 

statistical analyzes were done through the IBM SPSS 

statistics 21.0 software. A P-value of 0.05 was 

considered as a significant level in statistical analysis. 

 

Results 
Figure 2 shows an example of raw EEGs recorded at rest 

and task conditions. After EEG preprocessing, functional 

connectivity between all electrode pairs was first 

calculated through the coherence algorithm. Figure 3 

shows the grand average of coherence values for all 

electrode pairs in both rest state and task condition. As 

mentioned, there were 36 cases in each research group. 

As can be seen, the functional connectivity between 

different brain regions seems to be different in the task 
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condition compared to the rest condition. According to 

the repeated measures analysis, a significant main effect 

was observed between states for functional connectivity 

values (F = 3.92, P = 0.025). Brain sites showed 

significant within-subject effects and the interaction 

between states and channels was significant for 

connectivity values (F = 3.68, P = 0.034). Post hoc 

comparisons indicated that FP1-F7, FP1-F8 and FP1-Fz 

connectivity were significantly lower during the task 

state compared to rest (P < 0.05). Moreover, F4-P3, F4-

P4, FP1-O1, FP2-O2, F3-O1, F4-O1, F8-O1, C4-O1, F3-

O2, F4-O2, F7-O2, F8-O2, Fz-O1, Fz-O2, Cz-O1 and 

Fz-P4 connectivity were significantly higher during the 

arithmetic task state (P < 0.05). 

 

 
 

Figure 2. An Example of Raw EEGs Recorded at Rest (Left) and Task (Right) Conditions 

 

 
 

Figure 3. The Grand Average of Functional Connectivity Obtained through the Coherence Algorithm for 
All EEG Channel Pairs in the (a) Rest State, and (b) Task Condition 
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Table 1 shows the coherence values of the pairwise 

channels with significant differences between the two 

states of rest and arithmetic task. 

 

Table 1. Significant Differences between Functional Connectivity Measures of Rest and Task States 
through the Post Hoc Comparison 

 

Pairwise 
Channel 

Rest State 
(n = 36) 
(m ± SD) 

Task State 
(n = 36) 
(m ± SD) 

T-value 
(P-value) 

Mean 
Difference 

Standard 
Error 

95% Confidence Interval 

Lower Upper 

FP1-F7 0.742 ± 0.135 0.669 ± 0.130 2.327 (0.023) 0.072 0.031 0.0104 0.135 

FP1-F8 0.472 ± 0.135 0.410 ± 0.111 2.112 (0.038) 0.061 0.029 0.003 0.120 

F4-P3 0.373 ± 0.086 0.424 ± 0.094 2.381 (0.020) 0.050 0.021 0.008 0.093 

F4-P4 0.437 ± 0.082 0.486 ± 0.100 2.265 (0.027) 0.049 0.021 0.005 0.092 

FP1-O1 0.178 ± 0.058 0.213 ± 0.079 2.152 (0.035) 0.035 0.016 0.002 0.068 

FP2-O1 0.163 ± 0.070 0.199 ± 0.071 2.132 (0.037) 0.035 0.016 0.002 0.069 

F3-O1 0.270 ± 0.079 0.327 ± 0.092 2.846 (0.006) 0.057 0.020 0.017 0.097 

F4-O1 0.241 ± 0.066 0.297 ± 0.083 3.135 (0.003) 0.055 0.017 0.020 0.091 

F8-O1 0.159 ± 0.042 0.205 ± 0.080 3.032 (0.003) 0.045 0.015 0.015 0.076 

C4-O1 0.432 ± 0.078 0.473 ± 0.093 2.000 (0.049) 0.040 0.020 0.001 0.081 

F3-O2 0.250 ± 0.081 0.302 ± 0.085 2.651 (0.010) 0.052 0.019 0.012 0.091 

F4-O2 0.256 ± 0.072 0.317 ± 0.090 3.161 (0.002) 0.061 0.019 0.022 0.099 

F7-O2 0.177 ± 0.062 0.211 ± 0.065 2.249 (0.028) 0.033 0.015 0.003 0.064 

F8-O2 0.186 ± 0.051 0.231 ± 0.087 2.663 (0.010) 0.044 0.016 0.011 0.078 

FP1-Fz 0.668 ± 0.114 0.609 ± 0.122 2.095 (0.040) 0.058 0.027 0.002 0.114 

Fz-O1 0.258 ± 0.067 0.310 ± 0.088 2.802 (0.007) 0.052 0.018 0.014 0.089 

Fz-O2 0.259 ± 0.073 0.311 ± 0.091 2.675 (0.009) 0.053 0.019 0.013 0.091 

Cz-O1 0.444 ± 0.070 0.482 ± 0.090 2.006 (0.049) 0.038 0.019 0.002 0.076 

Fz-P4 0.416 ± 0.074 0.458 ± 0.102 1.996 (0.049) 0.042 0.021 0.002 0.084 

Figure 4 shows the box plots for permutation entropy in 

rest and task conditions. As can be seen, there are some 

differences in the nonlinear measures among different 

brain regions between resting and task conditions. 

According to the repeated measures analysis, a 

significant main effect was observed between rest and 

task states for permutation entropy values (F = 3.81, P = 

0.032). Brain sites showed significant within-subject 

effects and the interaction between states and channels 

was significant for entropy values (F = 3.50, P = 0.041). 

Post hoc comparisons indicated that the permutation 

entropy was significantly higher in the FP1, T3, T4, P4 

and Pz channels during the arithmetic task compared to 

the rest state (P < 0.05). Table 2 shows the post hoc 

comparisons between permutation entropy measures of 

rest and task states. As can be seen, the entropy values in 

all brain regions are higher in the task state than in the 

rest state, and their P-values are close to significance (P 

< 0.1). 
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Figure 4. Box Plots for Permutation Entropy in Rest and Task Conditions 
 
 

Table 2. Post Hoc Comparison between Permutation Entropy Measures of Rest and Task States 
 

EEG 
Channel 

Rest State 
(n = 36) 
(m ± SD) 

Task State 
(n = 36) 
(m ± SD) 

t-value 
(P-value) 

Mean 
difference 

Standard 
error 

95% Confidence interval 

Lower Upper 

FP1 0.610 ± 0.021 0.621 ± 0.026 1.968 (0.048)* 0.011 0.005 0.001 0.022 

FP2 0.611 ± 0.020 0.622 ± 0.026 1.825 (0.072) 0.010 0.004 -0.021 0.009 

F3 0.595 ± 0.017 0.605 ± 0.029 1.772 (0.081) 0.010 0.004 -0.021 0.001 

F4 0.595 ± 0.019 0.605 ± 0.028 1.707 (0.092) 0.009 0.005 -0.021 0.001 

F7 0.610 ± 0.021 0.619 ± 0.027 1.642 (0.105) 0.009 0.005 -0.020 0.002 

F8 0.612 ± 0.019 0.620 ± 0.029 1.485 (0.142) 0.008 0.006 -0.020 0.003 

T3 0.597 ± 0.020 0.611 ± 0.030 2.147 (0.035)* 0.013 0.006 0.001 0.025 

T4 0.600 ± 0.020 0.613 ± 0.031 2.088 (0.040)* 0.012 0.006 0.001 0.025 

C3 0.590 ± 0.018 0.600 ± 0.030 1.699 (0.094) 0.009 0.005 -0.021 0.001 

C4 0.590 ± 0.019 0.601 ± 0.031 1.714 (0.091) 0.010 0.006 -0.022 0.001 

T5 0.601 ± 0.023 0.614 ± 0.032 1.914 (0.060) 0.012 0.007 -0.026 0.001 

T6 0.592 ± 0.025 0.604 ± 0.032 1.797 (0.077) 0.012 0.006 -0.027 0.001 

P3 0.582 ± 0.024 0.595 ± 0.033 1.914 (0.060) 0.013 0.006 -0.027 0.001 

P4 0.578 ± 0.028 0.593 ± 0.038 2.147 (0.035)* 0.014 0.007 0.001 0.028 

O1 0.577 ± 0.029 0.595 ± 0.034 1.901 (0.061) 0.015 0.008 -0.031 0.001 

O2 0.576 ± 0.027 0.589 ± 0.037 1.661 (0.101) 0.013 0.007 -0.028 0.002 

Fz 0.591 ± 0.016 0.601 ± 0.025 1.766 (0.082) 0.009 0.005 -0.019 0.001 

Cz 0.590 ± 0.017 0.600 ± 0.028 1.821 (0.073) 0.010 0.005 -0.021 0.001 

Pz 0.579 ± 0.022 0.594 ± 0.034 2.217 (0.030)* 0.015 0.007 0.001 0.028 
 

* Indicates P < 0.05 
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Discussion 
By uncovering the specific brain regions and networks 

involved in different cognitive tasks, researchers gain a 

deeper understanding of how the human brain processes 

information, makes decisions, and solves problems. This 

knowledge contributes to the fields of neuroscience and 

cognitive psychology, advancing our theoretical 

understanding of human cognition. In this study, we 

investigated and compared the connectivity and 

complexity features of EEG signals recorded during rest 

and arithmetic task conditions. The results demonstrated 

reduced functional connectivity within frontal regions in 

the arithmetic task, which may reflect a compensatory 

mechanism to facilitate connectivity between the frontal 

lobe and other cortical regions in order to perform a 

specific cognitive task. Accordingly, we observed that 

the functional connectivity between the frontal lobe and 

the occipital and parietal regions increased significantly 

during the arithmetic task. Previous studies showed that 

during arithmetic tasks, there is increased connectivity 

between the frontal and parietal lobes (frontoparietal 

connectivity) (46, 47). The frontal lobes, associated with 

executive functions and cognitive control, become more 

actively connected to the parietal lobes, which are 

involved in numerical processing, spatial cognition, and 

attention (48). This enhanced connectivity indicates that 

the coordination needed for cognitive functions, such as 

working memory and attention, should be integrated 

seamlessly with numerical processing and problem-

solving strategies (21). Furthermore, literature shows 

that in the context of arithmetic tasks, frontooccipital 

connectivity also undergoes change (49). The frontal 

lobes, particularly involved in higher-order cognitive 

functions and attentional control, show increased 

connectivity with the occipital lobes, responsible for 

visual processing and spatial perception (50). This 

enhanced connectivity suggests the integration of 

numerical information with visual-spatial 

representations, such as when dealing with arithmetic 

problems involving visual stimuli or spatial 

manipulation (51). 

Previous studies showed that the cortical regions 

associated with arithmetic tasks include the parietal lobe, 

particularly the intraparietal sulcus, the prefrontal cortex 

that is involved in working memory and executive 

functions, and areas within the temporal lobe such as the 

angular gyrus (52, 53). These brain regions play crucial 

roles in processing numerical information, calculation, 

and problem-solving tasks. Our findings showed that 

EEG complexity significantly increased in these brain 

areas during the arithmetic task. Previous studies showed 

that this heightened complexity in the prefrontal region 

reflects the recruitment of working memory, strategic 

planning, and inhibitory control mechanisms required 

for manipulating numerical information, selecting 

appropriate problem-solving strategies, and maintaining 

task-relevant information (54). Moreover, the temporal 

regions, involved in auditory and visual processing, 

language comprehension, and memory, undergo changes 

in complexity during arithmetic tasks, consistent with 

previous findings (55, 56). The temporal cortex may 

exhibit increased activity and complexity to support the 

integration of auditory and visual representations of 

numerical information, especially in tasks involving 

verbal and symbolic elements, as well as the retrieval of 

arithmetic facts from long-term memory (57). As shown 

in previous studies, the complexity of the parietal cortex, 

which plays a crucial role in numerical processing, 

spatial cognition, and attention, is also affected during 

arithmetic tasks (58). The parietal regions may show 

increased engagement and complexity as they are 

involved in numerical manipulation, mental arithmetic, 

and spatial representations required for solving 

arithmetic problems. Overall, during arithmetic tasks, 

the prefrontal, temporal, and parietal regions exhibit 

changes in complexity to accommodate the demands of 

working memory, attention, and the manipulation of 

numerical and spatial information. The dynamic 

modulation of complexity in these brain regions reflects 

the intricate interplay of cognitive processes essential for 

effective arithmetic problem-solving. 

 

Limitation 
The study primarily included a homogeneous group of 

young adults. This limited range of age and demographic 

features may restrict the generalizability of the findings 

across different age groups and populations. Moreover, 

the arithmetic task used may not fully capture the range 

of cognitive workloads encountered in everyday life. 

Future studies could benefit from incorporating a variety 

of tasks to assess how different cognitive demands affect 

brain activity. While EEG provides an excellent 

temporal resolution, its spatial resolution is limited. This 

might hinder the ability to identify specific brain regions 

involved in complex cognitive processes by overlooking 

subtle differences in localized brain activity. Although 

efforts were made to control for artifacts, individual 

differences in factors such as fatigue, motivation, and 

stress levels were not explicitly accounted for, which 

could impact the EEG results. These limitations 

highlight areas for further exploration and indicate the 

need for additional studies to build on the findings. 

 

Conclusion 
In summary, during arithmetic tasks, the increased 

connectivity in the frontoparietal and frontooccipital 

networks and heightened complexity in the prefrontal, 

temporal and parietal lobes reflect the collaborative 

engagement of brain areas specialized in numerical 

processing, attention, working memory, cognitive 

control, and visual-spatial cognition. These changes in 

connectivity and complexity facilitate the integration of 

multiple cognitive processes essential for effective 

arithmetic problem-solving. Enhancing our 

comprehension of these neurophysiological mechanisms 

not only furthers basic neuroscience but also holds 
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implications for applications in cognitive enhancement 

strategies, neurofeedback interventions, and the 

development of adaptive learning technologies. By 

understanding how the brain responds to cognitive 

demands, we can ultimately improve human 

performance and well-being across a broad spectrum of 

activities and contexts. 
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