Metabolite Alternations in the Dopamine Circuit Associated with Methamphetamine-Related Psychotic Symptoms: A Proton Magnetic Resonance Spectroscopy Study
Abstract
Objective: Chronic METH use results in neurodegenerative alternations in the human brain. The present study aimed to assess the long-term METH impact on brain metabolite concentrations in cases meeting the DSM-5 criteria regarding METH use.
Method: We recruited 42 METH users meeting the DSM-5 criteria and 21 healthy controls. Psychotic signs were measured using the Positive and Negative Syndrome Scale (PANSS). Proton magnetic resonance spectroscopy (1HMRS) evaluating Myo-inositol (Ml), Choline (Cho), Glutamine plus Glutamate (Glx), N-acetyl aspartate (NAA), and Creatine (Cre) were obtained in the dopaminergic pathway (Frontal Cortex, Substantia nigra, Ventral Tegmental Area (VTA), Nucleus Accumbens (NAc), Hippocampus, Striatum,) the subjects. All participants collected urine specimens for 24 hours to measure presence of specific metabolites including METH metabolite level, 5-Hydroxy indoleacetic acid metabolite (for serotonin level monitoring), and metanephrine metabolite (for dopamine level monitoring).
Results: Dopamine and Serotonin increased in the METH group (P < 0.001). METH caused an increase in the Cre (P < 0.001) and a decline in the Glx (P < 0.001), NAA (P = 0.008), and MI (P < 0.001) metabolite concentrations of dopamine circuits in METH users in comparison with healthy subjects. We found no change in Cho metabolite concentration. Psychological data and the neurometabolite concentrations in the studied area of the brain were significantly correlated.
Conclusion: There is an association between METH use and active neurodegeneration in the dopamine circuit, and it causes serious mental illness. 1HMRS can detect patient’s deterioration and progression of disease as well as follow-up management in patients with METH use disorder.
2. World Drug Report 2020. United Nations Office on Drugs and Crime, 2020.
3. World Drug Report 2019. United Nations Office on Drugs and Crime, 2019 Contract No.: 4. Chang L, Alicata D, Ernst T, Volkow N. Structural and metabolic brain changes in the striatum associated with methamphetamine abuse. Addiction. 2007;102 Suppl 1:16-32.
5. Sung YH, Yurgelun-Todd DA, Shi XF, Kondo DG, Lundberg KJ, McGlade EC, et al. Decreased frontal lobe phosphocreatine levels in methamphetamine users. Drug Alcohol Depend. 2013;129(1-2):102-9.
6. Thomas E, Lategan H, Verster C, Kidd M, Weich L. Methamphetamine-induced psychosis: Clinical features, treatment modalities and outcomes. S Afr J Psychiatr. 2016;22(1):980.
7. Cruickshank CC, Dyer KR. A review of the clinical pharmacology of methamphetamine. Addiction. 2009;104(7):1085-99.
8. Chiu VM, Schenk JO. Mechanism of action of methamphetamine within the catecholamine and serotonin areas of the central nervous system. Curr Drug Abuse Rev. 2012;5(3):227-42.
9. Howell LL, Kimmel HL. Monoamine transporters and psychostimulant addiction. Biochem Pharmacol. 2008;75(1):196-217.
10. Demougeot C, Garnier P, Mossiat C, Bertrand N, Giroud M, Beley A, et al. N-Acetylaspartate, a marker of both cellular dysfunction and neuronal loss: its relevance to studies of acute brain injury. J Neurochem. 2001;77(2):408-15.
11. Lowe MT, Kim EH, Faull RL, Christie DL, Waldvogel HJ. Dissociated expression of mitochondrial and cytosolic creatine kinases in the human brain: a new perspective on the role of creatine in brain energy metabolism. J Cereb Blood Flow Metab. 2013;33(8):1295-306.
12. Bustillo JR, Chen H, Gasparovic C, Mullins P, Caprihan A, Qualls C, et al. Glutamate as a marker of cognitive function in schizophrenia: a proton spectroscopic imaging study at 4 Tesla. Biol Psychiatry. 2011;69(1):19-27.
13. van Waarde A, Elsinga PH. Proliferation markers for the differential diagnosis of tumor and inflammation. Curr Pharm Des. 2008;14(31):3326-339.
14. Hattingen E, Raab P, Franz K, Zanella FE, Lanfermann H, Pilatus U. Myo-inositol: a marker of reactive astrogliosis in glial tumors? NMR Biomed. 2008;21(3):233-41.
15. Nordahl TE, Salo R, Leamon M. Neuropsychological effects of chronic methamphetamine use on neurotransmitters and cognition: a review. J Neuropsychiatry Clin Neurosci. 2003;15(3):317-25.
16. Burger A, Brooks SJ, Stein DJ, Howells FM. The impact of acute and short-term methamphetamine abstinence on brain metabolites: A proton magnetic resonance spectroscopy chemical shift imaging study. Drug Alcohol Depend. 2018;185:226-37.
17. Howells FM, Uhlmann A, Temmingh H, Sinclair H, Meintjes E, Wilson D, et al. 1H-magnetic resonance spectroscopy (1H-MRS) in methamphetamine dependence and methamphetamine induced psychosis. Schizophr res. 2014;153(1-3):122-8.
18. Ernst T, Chang L. Adaptation of brain glutamate plus glutamine during abstinence from chronic methamphetamine use. J Neuroimmune Pharmacol. 2008;3(3):165-72.
19. Nordahl TE, Salo R, Possin K, Gibson DR, Flynn N, Leamon M, et al. Low N-acetyl-aspartate and high choline in the anterior cingulum of recently abstinent methamphetamine-dependent subjects: a preliminary proton MRS study. Magnetic resonance spectroscopy. Psychiatry Res. 2002;116(1-2):43-52.
20. Nordahl TE, Salo R, Natsuaki Y, Galloway GP, Waters C, Moore CD, et al. Methamphetamine users in sustained abstinence: a proton magnetic resonance spectroscopy study. Arch Gen Psychiatry. 2005;62(4):444-52.
21. Chang L, Munsaka SM, Kraft-Terry S, Ernst T. Magnetic resonance spectroscopy to assess neuroinflammation and neuropathic pain. J Neuroimmune Pharmacol. 2013;8(3):576-93.
22. Sung YH, Cho SC, Hwang J, Kim SJ, Kim H, Bae S, et al. Relationship between N-acetyl-aspartate in gray and white matter of abstinent methamphetamine abusers and their history of drug abuse: a proton magnetic resonance spectroscopy study. Drug Alcohol Depend. 2007;88(1):28-35.
23. Yücel M, Lubman DI, Harrison BJ, Fornito A, Allen NB, Wellard RM, et al. A combined spectroscopic and functional MRI investigation of the dorsal anterior cingulate region in opiate addiction. Mol Psychiatry. 2007;12(7):611, 91-702.
24. Kim JE, Kim GH, Hwang J, Kim JY, Renshaw PF, Yurgelun-Todd DA, et al. Metabolic alterations in the anterior cingulate cortex and related cognitive deficits in late adolescent methamphetamine users. Addict Biol. 2018;23(1):327-36.
25. Cloak CC, Alicata D, Chang L, Andrews-Shigaki B, Ernst T. Age and sex effects levels of choline compounds in the anterior cingulate cortex of adolescent methamphetamine users. Drug Alcohol Depend. 2011;119(3):207-15.
26. Sekine Y, Minabe Y, Ouchi Y, Takei N, Iyo M, Nakamura K, et al. Association of dopamine transporter loss in the orbitofrontal and dorsolateral prefrontal cortices with methamphetamine-related psychiatric symptoms. Am J Psychiatry. 2003;160(9):1699-701.
27. Su H, Chen T, Zhong N, Jiang H, Du J, Xiao K, et al. γ-aminobutyric acid and glutamate/glutamine alterations of the left prefrontal cortex in individuals with methamphetamine use disorder: a combined transcranial magnetic stimulation-magnetic resonance spectroscopy study. Ann Transl Med. 2020;8(6):347.
28. Su H, Chen T, Zhong N, Jiang H, Du J, Xiao K, et al. Decreased GABA concentrations in left prefrontal cortex of methamphetamine dependent patients: A proton magnetic resonance spectroscopy study. J Clin Neurosci. 2020;71:15-20.
29. Mondino M, Brunelin J, Saoud M. N-Acetyl-Aspartate Level is Decreased in the Prefrontal Cortex in Subjects At-Risk for Schizophrenia. Front Psychiatry. 2013;4:99.
30. Ghamari Givi H, Moulavi P, Heshmati R. Exploration of the factor structure of positive and negative syndrome scale in schizophernia spectrum disorder. J clin psychol. 2010;2(2):1-10.
31. Opler MGA, Yavorsky C, Daniel DG. Positive and Negative Syndrome Scale (PANSS) Training: Challenges, Solutions, and Future Directions. Innov Clin Neurosci. 2017;14(11-12):77-81.
32. Bu Q, Lv L, Yan G, Deng P, Wang Y, Zhou J, et al. NMR-based metabonomic in hippocampus, nucleus accumbens and prefrontal cortex of methamphetamine-sensitized rats. Neurotoxicology. 2013;36:17-23.
33. Grachev ID, Kumar R, Ramachandran TS, Szeverenyi NM. Cognitive interference is associated with neuronal marker N-acetyl aspartate in the anterior cingulate cortex: an in vivo (1)H-MRS study of the Stroop Color-Word task. Mol Psychiatry. 2001;6(5):496, 529-39.
34. Ariyannur PS, Moffett JR, Manickam P, Pattabiraman N, Arun P, Nitta A, et al. Methamphetamine-induced neuronal protein NAT8L is the NAA biosynthetic enzyme: implications for specialized acetyl coenzyme A metabolism in the CNS. Brain Res. 2010;1335:1-13.
35. London ED, Kohno M, Morales AM, Ballard ME. Chronic methamphetamine abuse and corticostriatal deficits revealed by neuroimaging. Brain Res. 2015;1628(Pt A):174-85.
36. Almalki AH, Das SC, Alshehri FS, Althobaiti YS, Sari Y. Effects of sequential exposure to ethanol and methamphetamine on tissue contents of dopamine, serotonin and glutamate in Wistar rats. The FASEB Journal. 2017;31:661-2.
37. Althobaiti YS, Almalki AH, Das SC, Alshehri FS, Sari Y. Effects of repeated high-dose methamphetamine and ceftriaxone post-treatments on tissue content of dopamine and serotonin as well as glutamate and glutamine. Neurosci Lett. 2016;634:25-31.
38. Wu Q, Qi C, Long J, Liao Y, Wang X, Xie A, et al. Metabolites Alterations in the Medial Prefrontal Cortex of Methamphetamine Users in Abstinence: A (1)H MRS Study. Front Psychiatry. 2018;9:478.
39. Friend DM, Keefe KA. Glial reactivity in resistance to methamphetamine-induced neurotoxicity. J Neurochem. 2013;125(4):566-74.
40. Kim YT, Lee SW, Kwon DH, Seo JH, Ahn BC, Lee J. Dose-dependent frontal hypometabolism on FDG-PET in methamphetamine abusers. J Psychiatr Res. 2009;43(14):1166-70.
41. Ernst T, Chang L, Leonido-Yee M, Speck O. Evidence for long-term neurotoxicity associated with methamphetamine abuse: A 1H MRS study. Neurology. 2000;54(6):1344-9.
42. Rae CD. A guide to the metabolic pathways and function of metabolites observed in human brain 1H magnetic resonance spectra. Neurochem Res. 2014;39(1):1-36.
43. Akiyama K, Saito A, Shimoda K. Chronic methamphetamine psychosis after long-term abstinence in Japanese incarcerated patients. Am J Addict. 2011;20(3):240-9.
44. Wearne TA, Cornish JL. A Comparison of Methamphetamine-Induced Psychosis and Schizophrenia: A Review of Positive, Negative, and Cognitive Symptomatology. Front Psychiatry. 2018;9:491.
45. Liemburg E, Sibeijn-Kuiper A, Bais L, Pijnenborg G, Knegtering H, van der Velde J, et al. Prefrontal NAA and Glx Levels in Different Stages of Psychotic Disorders: a 3T 1H-MRS Study. Sci Rep. 2016;6:21873.
46. Callicott JH, Bertolino A, Egan MF, Mattay VS, Langheim FJ, Weinberger DR. Selective relationship between prefrontal N-acetylaspartate measures and negative symptoms in schizophrenia. Am J Psychiatry. 2000;157(10):1646-51.
47. Théberge J, Al-Semaan Y, Drost DJ, Malla AK, Neufeld RW, Bartha R, et al. Duration of untreated psychosis vs. N-acetylaspartate and choline in first episode schizophrenia: a 1H magnetic resonance spectroscopy study at 4.0 Tesla. Psychiatry Res. 2004;131(2):107-14.
48. Juan R. Bustillo, M.D. ,, Laura M. Rowland, M.A. ,, John Lauriello, M.D. ,, Helen Petropoulos, B.E. ,, Roger Hammond, M.D. ,, Blaine Hart, M.D. , and, et al. High Choline Concentrations in the Caudate Nucleus in Antipsychotic-Naive Patients With Schizophrenia. Am J Psychiatry. 2002;159(1):130-3. PubMed PMID: 11772701.
49. Rothermundt M, Ohrmann P, Abel S, Siegmund A, Pedersen A, Ponath G, et al. Glial cell activation in a subgroup of patients with schizophrenia indicated by increased S100B serum concentrations and elevated myo-inositol. Prog Neuropsychopharmacol Biol Psychiatry. 2007;31(2):361-4.
Files | ||
Issue | Vol 17 No 1 (2022) | |
Section | Original Article(s) | |
DOI | https://doi.org/10.18502/ijps.v17i1.8053 | |
Keywords | ||
Brain Dopamine Magnetic Resonance Spectroscopy Methamphetamine Serotonin Substance-Related Disorders |
Rights and permissions | |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |