Articles

An Overview of Pharmacological Approaches for Management and Repair of Spinal Cord Injuries

Abstract

Spinal cord injury (SCI) leads to loss of nervous tissue and consequently to catastrophic neurological deficits. Up to now there is no definite treatment available that restores the loss of function to a degree that an independent life can be guaranteed.This justifies the cost of research into the new modalities for a treatment of SCIs. In current paper, recent developments and new approaches in pharmacological therapy have been reviewed.

Botterell EH, Jousse AT, Kraus AS, Thompson MG, WynneJones M, Geisler WO. A model for the future care of acute spinal cord injuries. Can J Neurol Sci 1975; 2: 361-380.

Kraus JF, Silberman TA, McArthur DL. Epidemiology of spinal cord injury. In: Menezes AH, Sonntag VKH, eds. Principles of spinal surgery. NEW YORK: McGraw-Hill; 1996.

Van den Berg ME, Castellote JM, Mahillo-Fernandez I, de Pedro-Cuesta J. Incidence of spinal cord injury worldwide: a systematic review. Neuroepidemiology 2010; 34:184-192.

National Spinal Cord Injury Statistical Center. Spinal cord injury. facts and figures at a glance. J Spinal Cord Med 2005; 28: 379-380.

Anderson DW, Kalsbeek WD. The National Head and Spinal Cord Injury Survey: assessment of some uncertainties affecting the findings. J Neurosurg 1980; Suppl: 32-34.

Ergas Z. Spinal cord injury in the United States: a statistical update. Cent Nerv Syst Trauma 1985; 2: 19-32.

Harvey C, Rothschild BB, Asmann AJ, Stripling T. New estimates of traumatic SCI prevalence: a survey-based approach. Paraplegia 1990; 28: 537-544.

Sekhon LH, Fehlings MG. Epidemiology, demographics, and pathophysiology of acute spinal cord injury. Spine 2001; 26 (24 Suppl): S2-12.

Berkowitz M, Harvey C, Greene CG, Wilson SE. Economic Consequences of Traumatic Spinal Cord Injury. N Engl J Med 1994; 330:1464.

Stripling TE. The cost of economic consequences of traumatic spinal cord injury. Paraplegia News 1990; 8: 50-54.

David S, Lacroix S. Molecular approaches to spinal cord repair. Annu Rev Neurosci 2003; 26: 411-440.

Abraham KE, Brewer KL, McGinty JF. Opioid peptide messenger RNA expression is increased at spinal and supraspinal levels following excitotoxic spinal cord injury. Neuroscience 2000; 99: 189-197.

Abraham KE, McGinty JF, Brewer KL. The role of kainic acid/AMPA and metabotropic glutamate receptors in the regulation of opioid mRNA expression and the onset of pain-related behavior following excitotoxic spinal cord injury. Neuroscience 2001; 104: 863-874.

Filbin MT. Myelin-associated inhibitors of axonal regeneration in the adult mammalian CNS. Nat Rev Neurosci 2003; 4: 703-713.

Hulsebosch CE. Recent advances in pathophysiology and treatment of spinal cord injury. Adv Physiol Educ 2002; 26: 238-255.

Onose G, Anghelescu A, Muresanu DF, Padure L, Haras MA, Chendreanu CO, et al. A review of published reports on neuroprotection in spinal cord injury. Spinal Cord 2009; 47: 716-726.

Silber JS, Vaccaro AR. Summary statement: the role and timing of decompression in acute spinal cord injury: evidence-based guidelines. Spine 2001; 26: S101-110.

Fehlings MG, Sekhon LH, Tator C. The role and timing of decompression in acute spinal cord injury: what do we know? What should we do? Spine 2001; 26: S101-110.

Sayer FT, Kronvall E, Nilsson OG. Methylprednisolone treatment in acute spinal cord injury: the myth challenged through a structured analysis of published literature. Spine 2006; 6: 335-343.

Baptiste DC, Fehlings MG. Pharmacological approaches to repair the injured spinal cord. J Neurotrauma 2006; 23: 318-334.

Blits B, Bunge MB. Direct gene therapy for repair of the spinal cord. J Neurotrauma 2006; 23: 508-520.

Pearse DD, Bunge MB. Designing cell- and gene-based regeneration strategies to repair the injured spinal cord. J Neurotrauma 2006; 23: 438-452.

Scott AL, Ramer LM, Soril LJ, Kwiecien JM, Ramer MS. Targeting myelin to optimize plasticity of spared spinal axons. Mol Neurobiol 2006; 33: 91-111.

Baptiste DC, Fehlings MG. Emerging drugs for spinal cord injury. Expert Opin Emerg Drugs 2008; 13: 63-80.

Bishnoi M, Chopra K, Kulkarni SK. U-74500A (lazaroid), a 21-aminosteroid attenuates neuroleptic-induced orofacial dyskinesia. Methods Find Exp Clin Pharmacol 2007; 29: 601-605.

Lee JM, Yan P, Xiao Q, Chen S, Lee KY, Hsu CY, et al. Methylprednisolone protects oligodendrocytes but not neurons after spinal cord injury. J Neurosci 2008; 28: 3141-3149.

Wu J, Yang H, Qiu Z, Zhang Q, Ding T, Geng D. Effect of combined treatment with methylprednisolone and Nogo-A monoclonal antibody after rat spinal cord injury. J Int Med Res 2010; 38: 570-582.

Nash HH, Borke RC, Anders JJ. Ensheathing cells and methylprednisolone promote axonal regeneration and functional recovery in the lesioned adult rat spinal cord. J Neurosci 2002; 22: 7111-7120.

Bracken MB, Shepard MJ, Hellenbrand KG, Collins WF, Leo LS, Freeman DF, et al. Methylprednisolone and neurological function 1 year after spinal cord injury. Results of the National Acute Spinal Cord Injury Study. J Neurosurg 1985; 63: 704-713.

Petitjean ME, Pointillart V, Dixmerias F, Wiart L, Sztark F, Lassie P, et al. [Medical treatment of spinal cord injury in the acute stage]. Ann Fr Anesth Reanim 1998; 17: 114-122.

Pannu R, Barbosa E, Singh AK, Singh I. Attenuation of acute inflammatory response by atorvastatin after spinal cord injury in rats. J Neurosci Res 2005; 79: 340-350.

Michael-Titus AT. Omega-3 fatty acids: their neuroprotective and regenerative potential in traumatic neurological injury. Clin Lipidology 2009; 4: 343-353.

King VR, Huang WL, Dyall SC, Curran OE, Priestley JV, Michael-Titus AT. Omega-3 fatty acids improve recovery, whereas omega-6 fatty acids worsen outcome, after spinal cord injury in the adult rat. J Neurosci 2006; 26: 4672-4680.

Wu JM, DiPietrantonio AM, Hsieh TC. Mechanism of fenretinide (4-HPR)-induced cell death. Apoptosis 2001; 6: 377-388.

Lopez-Vales R, Redensek A, Skinner TA, Rathore KI, Ghasemlou N, Wojewodka G, et al. Fenretinide promotes functional recovery and tissue protection after spinal cord contusion injury in mice. J Neurosci 2010; 30: 3220-3226.

Byts N, Siren AL. Erythropoietin: a multimodal neuroprotective agent. Exp Transl Stroke Med 2009; 1: 4.

Siren AL, Fasshauer T, Bartels C, Ehrenreich H. Therapeutic potential of erythropoietin and its structural or functional variants in the nervous system. Neurotherapeutics 2009; 6: 108-127.

Grasso G, Sfacteria A, Erbayraktar S, Passalacqua M, Meli F, Gokmen N, et al. Amelioration of spinal cord compressive injury by pharmacological preconditioning with erythropoietin and a nonerythropoietic erythropoietin derivative. J Neurosurg Spine 2006; 4: 310-318.

Vitellaro-Zuccarello L, Mazzetti S, Madaschi L, Bosisio P, Gorio A, De Biasi S. Erythropoietin-mediated preservation of the white matter in rat spinal cord injury. Neuroscience 2007; 144: 865-877.

Matis GK, Birbilis TA. Erythropoietin in spinal cord injury. Eur Spine J 2009; 18: 314-323.

De Nicola AF, Gonzalez SL, Labombarda F, Deniselle MC, Garay L, Guennoun R, et al. Progesterone treatment of spinal cord injury: Effects on receptors, neurotrophins, and myelination. J Mol Neurosci 2006; 28: 3-15.

Gonzalez SL, Labombarda F, Gonzalez Deniselle MC, Guennoun R, Schumacher M, De Nicola AF. Progesterone up-regulates neuronal brain-derived neurotrophic factor expression in the injured spinal cord. Neuroscience 2004; 125: 605-614.

Labombarda F, Gonzalez S, Gonzalez Deniselle MC, Garay L, Guennoun R, Schumacher M, et al. Progesterone increases the expression of myelin basic protein and the number of cells showing NG2 immunostaining in the lesioned spinal cord. J Neurotrauma 2006; 23: 181-192.

Kachadroka S, Hall AM, Niedzielko TL, Chongthammakun S, Floyd CL. Effect of endogenous androgens on 17beta-estradiol-mediated protection after spinal cord injury in male rats. J Neurotrauma 2010; 27: 611-626.

Sribnick EA, Samantaray S, Das A, Smith J, Matzelle DD, Ray SK, et al. Postinjury estrogen treatment of chronic spinal cord injury improves locomotor function in rats. J Neurosci Res 2010; 88: 1738-1750.

Sribnick EA, Matzelle DD, Ray SK, Banik NL. Estrogen treatment of spinal cord injury attenuates calpain activation and apoptosis. J Neurosci Res 2006; 84: 1064-1075.

Ritz MF, Hausmann ON. Effect of 17beta-estradiol on functional outcome, release of cytokines, astrocyte reactivity and inflammatory spreading after spinal cord injury in male rats. Brain Res 2008; 1203: 177-188.

Liu F, You SW, Yao LP, Liu HL, Jiao XY, Shi M, et al. Secondary degeneration reduced by inosine after spinal cord injury in rats. Spinal Cord 2006; 44: 421-426.

Conta AC, Stelzner DJ. Immunomodulatory effect of the purine nucleoside inosine following spinal cord contusion injury in rat. Spinal Cord 2008; 46: 39-44.

Benowitz LI, Goldberg DE, Madsen JR, Soni D, Irwin N. Inosine stimulates extensive axon collateral growth in the rat corticospinal tract after injury. Proc Natl Acad Sci U S A 1999; 96: 13486-13490.

Zai L, Ferrari C, Subbaiah S, Havton LA, Coppola G, Strittmatter S, et al. Inosine alters gene expression and axonal projections in neurons contralateral to a cortical infarct and improves skilled use of the impaired limb. J Neurosci 2009; 29: 8187-8197.

Bhakar AL, Howell JL, Paul CE, Salehi AH, Becker EB, Said F, et al. Apoptosis induced by p75NTR overexpression requires Jun kinase-dependent phosphorylation of Bad. J Neurosci 2003; 23: 11373-11381.

Madura T, Yamashita T, Kubo T, Fujitani M, Hosokawa K, Tohyama M. Activation of Rho in the injured axons following spinal cord injury. EMBO Rep 2004; 5: 412-417.

McKerracher L, Higuchi H. Targeting Rho to stimulate repair after spinal cord injury. J Neurotrauma 2006; 23: 309-317.

Scott AL, Ramer MS. Schwann cell p75NTR prevents spontaneous sensory reinnervation of the adult spinal cord. Brain 2010; 133: 421-432.

Baptiste DC, Tighe A, Fehlings MG. Spinal cord injury and neural repair: focus on neuroregenerative approaches for spinal cord injury. Expert Opin Investig Drugs 2009; 18: 663-673.

Dubreuil CI, Winton MJ, McKerracher L. Rho activation patterns after spinal cord injury and the role of activated Rho in apoptosis in the central nervous system. J Cell Biol 2003; 162: 233-243.

Ellezam B, Dubreuil C, Winton M, Loy L, Dergham P, Selles-Navarro I, et al. Inactivation of intracellular Rho to stimulate axon growth and regeneration. Prog Brain Res 2002; 137: 371-380.

Cosgaya JM, Chan JR, Shooter EM. The neurotrophin receptor p75NTR as a positive modulator of myelination. Science 2002; 298: 1245-1248.

Dergham P, Ellezam B, Essagian C, Avedissian H, Lubell WD, McKerracher L. Rho signaling pathway targeted to promote spinal cord repair. J Neurosci 2002; 22: 6570-6577.

Lord-Fontaine S, Yang F, Diep Q, Dergham P, Munzer S, Tremblay P, et al. Local inhibition of Rho signaling by cell-permeable recombinant protein BA-210 prevents secondary damage and promotes functional recovery following acute spinal cord injury. J Neurotrauma 2008; 25: 1309-1322.

Neumann S, Bradke F, Tessier-Lavigne M, Basbaum AI. Regeneration of sensory axons within the injured spinal cord induced by intraganglionic cAMP elevation. Neuron 2002; 34: 885-893.

Qiu J, Cai D, Dai H, McAtee M, Hoffman PN, Bregman BS, et al. Spinal axon regeneration induced by elevation of cyclic AMP. Neuron 2002; 34: 895-903.

Hannila SS, Filbin MT. The role of cyclic AMP signaling in promoting axonal regeneration after spinal cord injury. Exp Neurol 2008; 209: 321-332.

Paugh SW, Payne SG, Barbour SE, Milstien S, Spiegel S. The immunosuppressant FTY720 is phosphorylated by sphingosine kinase type 2. FEBS Lett 2003; 554: 189-193.

Billich A, Bornancin F, Devay P, Mechtcheriakova D, Urtz N, Baumruker T. Phosphorylation of the immunomodulatory drug FTY720 by sphingosine kinases. J Biol Chem 2003; 278: 47408-47415.

Horga A, Montalban X. FTY720 (fingolimod) for relapsing multiple sclerosis. Expert Rev Neurother 2008; 8: 699-714.

Lee KD, Chow WN, Sato-Bigbee C, Graf MR, Graham RS, Colello RJ, et al. FTY720 reduces inflammation and promotes functional recovery after spinal cord injury. J Neurotrauma 2009; 26: 2335-2344.

Tom VJ, Sandrow-Feinberg HR, Miller K, Santi L, Connors T, Lemay MA, et al. Combining peripheral nerve grafts and chondroitinase promotes functional axonal regeneration in the chronically injured spinal cord. J Neurosci 2009; 29: 14881-14890.

Jakeman LB, Hoschouer EL, Basso DM. Injured mice at the gym: Review, results and considerations for combining chondroitinase and locomotor exercise to enhance recovery after spinal cord injury. Brain Res Bull 2010.

Bai F, Peng H, Etlinger JD, Zeman RJ. Partial functional recovery after complete spinal cord transection by combined chondroitinase and clenbuterol treatment. Pflugers Arch 2010; 460: 657-666.

Rolls A, Shechter R, London A, Segev Y, Jacob-Hirsch J, Amariglio N, et al. Two faces of chondroitin sulfate proteoglycan in spinal cord repair: a role in microglia/macrophage activation. PLoS Med 2008; 5: e171.

Jayanth P, Amith SR, Gee K, Szewczuk MR. Neu1 sialidase and matrix metalloproteinase-9 cross-talk is essential for neurotrophin activation of Trk receptors and cellular signaling. Cell Signal 2010; 22: 1193-1205.

Mountney A, Zahner MR, Lorenzini I, Oudega M, Schramm LP, Schnaar RL. Sialidase enhances recovery from spinal cord contusion injury. Proc Natl Acad Sci U S A 2010; 107: 11561-11566.

Yang LJ, Lorenzini I, Vajn K, Mountney A, Schramm LP, Schnaar RL. Sialidase enhances spinal axon outgrowth in vivo. Proc Natl Acad Sci U S A 2006; 103: 11057-11062.

Ohno S, Emori Y, Imajoh S, Kawasaki H, Kisaragi M, Suzuki K. Evolutionary origin of a calcium-dependent protease by fusion of genes for a thiol protease and a calcium-binding protein? Nature 1984; 312: 566-570.

Goll DE, Thompson VF, Li H, Wei W, Cong J. The calpain system. Physiol Rev 2003; 83: 731-801.

Hill CE, Guller Y, Raffa SJ, Hurtado A, Bunge MB. A calpain inhibitor enhances the survival of schwann cells in vitro and after transplantation into the injured spinal cord. J Neurotrauma 2010; 27: 1685-1695.

Xiong Y, Hall ED. Pharmacological evidence for a role of peroxynitrite in the pathophysiology of spinal cord injury. Exp Neurol 2009; 216: 105-114.

Yune TY, Lee JY, Cui CM, Kim HC, Oh TH. Neuroprotective effect of Scutellaria baicalensis on spinal cord injury in rats. J Neurochem 2009; 110: 1276-1287.

Kronenberg G, Endres M. Neuronal injury: folate to the rescue? J Clin Invest 2010; 120: 1383-1386.

Iskandar BJ, Nelson A, Resnick D, Skene JH, Gao P, Johnson C, et al. Folic acid supplementation enhances repair of the adult central nervous system. Ann Neurol 2004; 56: 221-227.

McTigue DM, Tripathi R, Wei P, Lash AT. The PPAR gamma agonist Pioglitazone improves anatomical and locomotor recovery after rodent spinal cord injury. Exp Neurol 2007; 205: 396-406.

Smith U. Pioglitazone: mechanism of action. Int J Clin Pract Suppl 2001: 13-18.

Oatway MA, Chen Y, Bruce JC, Dekaban GA, Weaver LC. Anti-CD11d integrin antibody treatment restores normal serotonergic projections to the dorsal, intermediate, and ventral horns of the injured spinal cord. J Neurosci 2005; 25: 637-647.

Bao F, Dekaban GA, Weaver LC. Anti-CD11d antibody treatment reduces free radical formation and cell death in the injured spinal cord of rats. J Neurochem 2005; 94: 1361-1373.

Ghonime M, Eldomany R, Abdelaziz A, Soliman H. Evaluation of immunomodulatory effect of three herbal plants growing in Egypt. Immunopharmacol Immunotoxicol 2010.

Hajhashemi V, Ghannadi A, Jafarabadi H. Black cumin seed essential oil, as a potent analgesic and antiinflammatory drug. Phytother Res 2004; 18: 195-199.

Lupidi G, Scire A, Camaioni E, Khalife KH, De Sanctis G, Tanfani F, et al. Thymoquinone, a potential therapeutic agent of Nigella sativa, binds to site I of human serum albumin. Phytomedicine 2010; 17: 714-720.

Kanter M, Coskun O, Kalayci M, Buyukbas S, Cagavi F. Neuroprotective effects of Nigella sativa on experimental spinal cord injury in rats. Hum Exp Toxicol 2006; 25: 127-133.

El-Naggar T, Gomez-Serranillos MP, Palomino OM, Arce C, Carretero ME. Nigella sativa L. seed extract modulates the neurotransmitter amino acids release in cultured neurons in vitro. J Biomed Biotechnol 2010; 2010: 398312.

Mousavi SH, Tayarani-Najaran Z, Asghari M, Sadeghnia HR. Protective effect of Nigella sativa extract and thymoquinone on serum/glucose deprivation-induced PC12 cells death. Cell Mol Neurobiol 2010; 30: 591-598.

Song JH, Huang CS, Nagata K, Yeh JZ, Narahashi T. Differential action of riluzole on tetrodotoxin-sensitive and tetrodotoxin- resistant sodium channels. J Pharmacol Exp Ther 1997; 282: 707-714.

Kitzman PH. Effectiveness of riluzole in suppressing spasticity in the spinal cord injured rat. Neurosci Lett 2009; 455: 150-153.

Schwartz G, Fehlings MG. Evaluation of the neuroprotective effects of sodium channel blockers after spinal cord injury: improved behavioral and neuroanatomical recovery with riluzole. J Neurosurg 2001; 94: 245-256.

Ates O, Cayli SR, Gurses I, Karabulut AB, Yucel N, Kocak A, et al. Do sodium channel blockers have neuroprotective effect after onset of ischemic insult? Neurol Res 2007; 29: 317-323.

Kaptanoglu E, Solaroglu I, Surucu HS, Akbiyik F, Beskonakli E. Blockade of sodium channels by phenytoin protects ultrastructure and attenuates lipid peroxidation in experimental spinal cord injury. Acta Neurochir 2005; 147: 405-412.

Schwartz G, Fehlings MG. Secondary injury mechanisms of spinal cord trauma: a novel therapeutic approach for the management of secondary pathophysiology with the sodium channel blocker riluzole. Prog Brain Res 2002; 137: 177-190.

Mu X, Azbill RD, Springer JE. Riluzole improves measures of oxidative stress following traumatic spinal cord injury. Brain Res 2000; 870: 66-72.

Ates O, Cayli SR, Gurses I, Turkoz Y, Tarim O, Cakir CO, et al. Comparative neuroprotective effect of sodium channel blockers after experimental spinal cord injury. J Clin Neurosci 2007; 14: 658-665.

Burcham PC, Kaminskas LM, Tan D, Pyke SM. Carbonyl-scavenging drugs & protection against carbonyl stress-associated cell injury. Mini Rev Med Chem 2008; 8: 319-330.

Hamann K, Durkes A, Ouyang H, Uchida K, Pond A, Shi R. Critical role of acrolein in secondary injury following ex vivo spinal cord trauma. J Neurochem 2008; 107: 712-721.

Hamann K, Shi R. Acrolein scavenging: a potential novel mechanism of attenuating oxidative stress following spinal cord injury. J Neurochem 2009; 111: 1348-1356.

Hamann K, Nehrt G, Ouyang H, Duerstock B, Shi R. Hydralazine inhibits compression and acrolein-mediated injuries in ex vivo spinal cord. J Neurochem 2008; 104: 708-718.

Stirling DP, Khodarahmi K, Liu J, McPhail LT, McBride CB, Steeves JD, et al. Minocycline treatment reduces delayed oligodendrocyte death, attenuates axonal dieback, and improves functional outcome after spinal cord injury. J Neurosci 2004; 24: 2182-2190.

Yune TY, Lee JY, Jung GY, Kim SJ, Jiang MH, Kim YC, et al. Minocycline alleviates death of oligodendrocytes by inhibiting pro-nerve growth factor production in microglia after spinal cord injury. J Neurosci 2007; 27: 7751-7761.

Lee SM, Yune TY, Kim SJ, Park DW, Lee YK, Kim YC, et al. Minocycline reduces cell death and improves functional recovery after traumatic spinal cord injury in the rat. J Neurotrauma 2003; 20: 1017-1027.

Lim CT, Kola B, Korbonits M, Grossman AB. Ghrelin's role as a major regulator of appetite and its other functions in neuroendocrinology. Prog Brain Res 2010; 182: 189-205.

O'Brien M, Earley P, Morrison JJ, Smith TJ. Ghrelin in the human myometrium. Reprod Biol Endocrinol 2010; 8: 55.

Mondal MS, Date Y, Yamaguchi H, Toshinai K, Tsuruta T, Kangawa K, et al. Identification of ghrelin and its receptor in neurons of the rat arcuate nucleus. Regul Pept 2005; 126: 55-59.

Lee JY, Chung H, Yoo YS, Oh YJ, Oh TH, Park S, et al. Inhibition of apoptotic cell death by ghrelin improves functional recovery after spinal cord injury. Endocrinology 2010; 151: 3815-3826.

Wolfe DL, Hayes KC, Hsieh JT, Potter PJ. Effects of 4-aminopyridine on motor evoked potentials in patients with spinal cord injury: a double-blinded, placebo-controlled crossover trial. J Neurotrauma 2001; 18: 757-771.

Jensen JM, Shi R. Effects of 4-aminopyridine on stretched mammalian spinal cord: the role of potassium channels in axonal conduction. J Neurophysiol 2003; 90: 2334-2340.

Segal JL, Brunnemann SR. 4-Aminopyridine alters gait characteristics and enhances locomotion in spinal cord injured humans. J Spinal Cord Med 1998; 21: 200-204.

Grijalva I, Guizar-Sahagun G, Castaneda-Hernandez G, Mino D, Maldonado-Julian H, Vidal-Cantu G, et al. Efficacy and safety of 4-aminopyridine in patients with long-term spinal cord injury: a randomized, double-blind, placebo-controlled trial. Pharmacotherapy 2003; 23: 823-834.

Segal JL, Pathak MS, Hernandez JP, Himber PL, Brunnemann SR, Charter RS. Safety and efficacy of 4-aminopyridine in humans with spinal cord injury: a long-term, controlled trial. Pharmacotherapy 1999; 19: 713-723.

McBride JM, Smith DT, Byrn SR, Borgens RB, Shi R. 4-Aminopyridine derivatives enhance impulse conduction in guinea-pig spinal cord following traumatic injury. Neuroscience 2007; 148: 44-52.

Sun W, Smith D, Fu Y, Cheng JX, Bryn S, Borgens R, et al. Novel potassium channel blocker, 4-AP-3-MeOH, inhibits fast potassium channels and restores axonal conduction in injured guinea pig spinal cord white matter. J Neurophysiol 2010; 103: 469-478.

Files
IssueVol 5 No 4 (2010) QRcode
SectionArticles
Keywords
Medication therapy management Spinal cord injury

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Khoshnevisan A, Mardani A, Kamali S. An Overview of Pharmacological Approaches for Management and Repair of Spinal Cord Injuries. Iran J Psychiatry. 1;5(4):119-127.