Abnormalities of Quantitative Electroencephalography in Children with Asperger Disorder Using Spectrogram andCoherence Values
Abstract
Objective: To obtain abnormalities in quantitative Electroencephalography QEEG) and to observe connectivity between electrodes in children with Asperger disorder.
Method: In this study, spectrogram criteria and coherence values are used as a tool for evaluating QEEG in 15 children with Asperger disorder (10 boys and 5 girls aged between 6 to 11 years old) and in 11 control children boys and 4 girls with the same age range).
Results: The evaluation of QEEG using statistical analysis and spectrogram criteria demonstrates that the relaxed eye-opened condition in gamma frequency band (34-44Hz) has the best distinction level of 96.2% using spectrogram. The children with Asperger disorder had significant lower spectrogram criteria values (p<0.01) at Fp1 electrode and lower values (p<0.05) at Fp2 and T6 electrodes. Coherence values at 171 pairs EEG electrodes indicate that the connectivity at (T4, P4), (T4, Cz), (T4, C4) electrode pairs and (T4, O1) had significant differences (p<0.01) in the two groups in the gamma band.
Conclusions: It is shown that gamma frequency band can discriminate 96.2% of the two groups using the spectrogram criteria. The results demonstrate that there are more abnormalities in the prefrontal and right temporal lobes using spectrogram criteria and there are more abnormalities the connectivity of right temporal lobe with the other lobes in the gamma frequency band.
Asperger H. Die Autistischen Psychopathen in kinderrsalter. Arch Psychiatr Nervenkr 1994; 177: 76-136
Wing L. Asperger's syndrome: a clinical account. Psychol Med 1981; 11: 115-129.
Frith U. Emanuel Miller lecture: confusions and controversies about Asperger syndrome. J Child Psychol Psychiatry 2004; 45: 672-686.
Akhondzadeh S, Erfani S, Mohammadi MR, Tehrani-Doost M, Amini H, Gudarzi SS, et al. Cyproheptadine in the treatment of autistic disorder: a double-blind placebo-controlled trial. J Clin Pharm Ther 2004; 29: 145-150.
Fombonne E. The epidemiology of autism: a review. Psychol Med 1999; 29: 769-786.
World Health Organization. ICD-10, the international classification of disease-revision 10, classification of mental and behavioral disorders: Diagnostic criteria for research. Geneva: World Health Organization; 1992.
Volkmar FR, Lord C, Klin A, Schultz R,Cook EH. Autism and the Pervasive Developmental. In: Martin A, Volkmar FR,Lewis M, eds. Lewis's Child and Adolescent Psychiatry: A Comprehensive Textbook. 4th ed. Lippincott Williams & Wilkins; 2007. p. 396-384.
Chez MG, Chang M, Krasne V, Coughlan C, Kominsky M,Schwartz A. Frequency of epileptiform EEG abnormalities in a sequential screening of autistic patients with no known clinical epilepsy from 1996 to 2005. Epilepsy Behav 2006; 8: 267-271.
Dawson G, Klinger LG, Panagiotides H, Lewy A,Castelloe P. Subgroups of autistic children based on social behavior display distinct patterns of brain activity. J Abnorm Child Psychol 1995; 23: 569-583.
Bashina VM, Gorbachevskaia NL, Simashkova NV, Iznak AF, Kozhushko LF,Iakupova LP. [The clinical, neurophysiological and differential diagnostic aspects in a study of severe forms of early childhood autism]. Zh Nevrol Psikhiatr Im S S Korsakova 1994; 94: 68-71.
Orekhova EV, Stroganova TA, Nygren G, Tsetlin MM, Posikera IN, Gillberg C, et al. Excess of high frequency electroencephalogram oscillations in boys with autism. Biol Psychiatry 2007; 62: 1022-1029.
Senhadji L,Wendling F. Epileptic transient detection: wavelets and time-frequency approaches. Neurophysiol Clin 2002; 32: 175- 192.
Zhan Y, Halliday D, Jiang P, Liu X,Feng J. Detecting time-dependent coherence between non-stationary electrophysiological signals--a combined statistical and time-frequency approach. J Neurosci Methods 2006; 156: 322-332.
Tauscher J, Fischer P, Neumeister A, Rappelsberger P,Kasper S. Low frontal electroencephalographic coherence in neuroleptic-free schizophrenic patients. Biol Psychiatry 1998; 44: 438-447.
Weiss S,Rappelsberger P. Long-range EEG synchronization during word encoding correlates with successful memory performance. Brain Res Cogn Brain Res 2000; 9: 299-312.
American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders: DSM-IV-TR(Text review). Washington, DC: American Psychiatric Association; 2000.
Oldfield RC. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 1971; 9: 97-113.
Jasper HH. Report of Committee on Methods of Clinical Examination in Electroencephalography. Electroencephalogr Clin Neurophysiol 1958; 10: 370–375.
Kiymik MK, Guler I, Dizibuyuk A,Akin M. Comparison of STFT and wavelet transform methods in determining epileptic seizure activity in EEG signals for real-time application. Comput Biol Med 2005; 35: 603- 616.
Wang YM, Kang YH,Wu XJ. Application of STFT and HOS to analyse magnetostrictively generated pulse-echo signals of a steel pipe defect. NDT & E international 2006; 39: 289- 292
Alonso JF, Mananas MA, Romero S, Riba J, Barbanoj MJ,Hoyer D. Connectivity analysis of EEG under drug therapy. Conf Proc IEEE Eng Med Biol Soc 2007; 2007: 6188-6191.
Zweig MH,Campbell G. Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clin Chem 1993; 39: 561-577.
Abasolo D, Hornero R, Gomez C, Garcia M,Lopez M. Analysis of EEG background activity in Alzheimer's disease patients with Lempel-Ziv complexity and central tendency measure. Med Eng Phys 2006; 28: 315-322.
Lotte F, Congedo M, Lecuyer A, Lamarche F,Arnaldi B. A review of classification algorithms for EEG-based brain-computer interfaces. J Neural Eng 2007; 4: R1-R13.
John ER,Prichep LS. Principles of neurometrics and neurometric analysis of EEG and evoked potentials. In: Niedermeyer E,Lopez Da Silva FH, eds. EEG: Basic principles, clinical applications and related fields. 5th ed. Lippincott Williams & Wilkins; 1982. p.989-1003.
von Stein A,Sarnthein J. Different frequencies for different scales of cortical integration: from local gamma to long range alpha/theta synchronization. Int J Psychophysiol 2000; 38: 301-313.
Grice SJ, Spratling MW, Karmiloff-Smith A, Halit H, Csibra G, de Haan M, et al. Disordered visual processing and oscillatory brain activity in autism and Williams syndrome. Neuroreport 2001; 12: 2697-2700.
Schack B, Vath N, Petsche H, Geissler HG,Moller E. Phase-coupling of theta-gamma EEG rhythms during short-term memory processing. Int J Psychophysiol 2002; 44: 143- 163.
Whittington MA, Traub RD, Kopell N, Ermentrout B,Buhl EH. Inhibition-based rhythms: experimental and mathematical observations on network dynamics. Int J Psychophysiol 2000; 38: 315-336.
Casanova MF, Buxhoeveden DP, Switala AE,Roy E. Minicolumnar pathology in autism. Neurology 2002; 58: 428-432.
Casanova MF, Buxhoeveden D,Gomez J. Disruption in the inhibitory architecture of the cell minicolumn: implications for autisim. Neuroscientist 2003; 9: 496-507.
Herrmann CS,Demiralp T. Human EEG gamma oscillations in neuropsychiatric disorders. Clin Neurophysiol 2005; 116: 2719- 2733.
Klimesch W, Schack B,Sauseng P. The functional significance of theta and upper alpha oscillations. Exp Psychol 2005; 52: 99- 108.
Zilbovicius M, Boddaert N, Belin P, Poline JB, Remy P, Mangin JF, et al. Temporal lobe dysfunction in childhood autism: a PET study. Positron emission tomography. Am J Psychiatry 2000; 157: 1988-1993.
Cherkassky VL, Kana RK, Keller TA,Just MA. Functional connectivity in a baseline resting- state network in autism. Neuroreport 2006; 17: 1687-1690.
Files | ||
Issue | Vol 3 No 2 (2008) | |
Section | Articles | |
Keywords | ||
Asperger syndrome Investigative techniques Quantitative Electroencephalography (QEEG) |
Rights and permissions | |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |