Short Communication

Neural Correlates of Social Decision-Making

Abstract

Objective: Recent studies have utilized innovative techniques to investigate the neural mechanisms underlying social and individual decision-making, aiming to understand how individuals respond to the world.
Method: In this review, we summarized current scientific evidence concerning the neural underpinnings of social decision-making and their impact on social behavior.
Results: Critical brain regions involved in social cognition and decision-making are integral to the process of social decision-making. Notably, the medial prefrontal cortex (mPFC) and temporoparietal junction (TPJ) contribute to the comprehension of others' mental states. Similarly, the posterior superior temporal sulcus (pSTS) shows heightened activity when individuals observe faces and movements. On the lateral surface of the brain, the inferior frontal gyrus (IFG) and inferior parietal sulcus (IPS) play a role in social cognition. Furthermore, the medial surface of the brain, including the amygdala, anterior cingulate cortex (ACC), and anterior insula (AI), also participates in social cognition processes. Regarding decision-making, functional magnetic resonance imaging (fMRI) studies have illuminated the involvement of a network of brain regions, encompassing the ventromedial prefrontal cortex (vmPFC), ventral striatum (VS), and nucleus accumbens (NAcc).
Conclusion: Dysfunction in specific subregions of the prefrontal cortex (PFC) has been linked to various psychiatric conditions. These subregions play pivotal roles in cognitive, emotional, and social processing, and their impairment can contribute to the development and manifestation of psychiatric symptoms. A comprehensive understanding of the unique contributions of these PFC subregions to psychiatric disorders has the potential to inform the development of targeted interventions and treatments for affected individuals.

1. Platt ML. Neural correlates of decisions. Curr Opin Neurobiol. 2002;12(2):141-8.
2. Zhang L, Lengersdorff L, Mikus N, Gläscher J, Lamm C. Using reinforcement learning models in social neuroscience: frameworks, pitfalls and suggestions of best practices. Soc Cogn Affect Neurosci. 2020;15(6):695-707.
3. Chase HW, Kumar P, Eickhoff SB, Dombrovski AY. Reinforcement learning models and their neural correlates: An activation likelihood estimation meta-analysis. Cogn Affect Behav Neurosci. 2015;15(2):435-59.
4. Lee D, Seo H, Jung MW. Neural basis of reinforcement learning and decision making. Annu Rev Neurosci. 2012;35:287-308.
5. Collins AGE, Shenhav A. Advances in modeling learning and decision-making in neuroscience. Neuropsychopharmacology. 2022;47(1):104-18.
6. Rilling JK, King-Casas B, Sanfey AG. The neurobiology of social decision-making. Curr Opin Neurobiol. 2008;18(2):159-65.
7. Báez-Mendoza R, Vázquez Y, Mastrobattista EP, Williams ZM. Neuronal Circuits for Social Decision-Making and Their Clinical Implications. Front Neurosci. 2021;15:720294.
8. Blakemore SJ. The social brain in adolescence. Nat Rev Neurosci. 2008;9(4):267-77.
9. Gur RC, Gur RE. Social cognition as an RDoC domain. Am J Med Genet B Neuropsychiatr Genet. 2016;171b(1):132-41.
10. Eslinger PJ, Anders S, Ballarini T, Boutros S, Krach S, Mayer AV, et al. The neuroscience of social feelings: mechanisms of adaptive social functioning. Neurosci Biobehav Rev. 2021;128:592-620.
11. Henry A, Raucher-Chéné D, Obert A, Gobin P, Vucurovic K, Barrière S, et al. Investigation of the neural correlates of mentalizing through the Dynamic Inference Task, a new naturalistic task of social cognition. Neuroimage. 2021;243:118499.
12. Xu P, Peng S, Luo YJ, Gong G. Facial expression recognition: A meta-analytic review of theoretical models and neuroimaging evidence. Neurosci Biobehav Rev. 2021;127:820-36.
13. Besag FMC, Vasey MJ. Social cognition and psychopathology in childhood and adolescence. Epilepsy Behav. 2019;100(Pt B):106210.
14. Grüter T, Grüter M, Carbon CC. Neural and genetic foundations of face recognition and prosopagnosia. J Neuropsychol. 2008;2(1):79-97.
15. Scott LS, Arcaro MJ. A domain-relevant framework for the development of face processing. Nat Rev Psychol. 2023;2(3):183-95.
16. Burns EJ, Arnold T, Bukach CM. P-curving the fusiform face area: Meta-analyses support the expertise hypothesis. Neurosci Biobehav Rev. 2019;104:209-21.
17. Freiwald WA. The neural mechanisms of face processing: cells, areas, networks, and models. Curr Opin Neurobiol. 2020;60:184-91.
18. Anzellotti S, Caramazza A. The neural mechanisms for the recognition of face identity in humans. Front Psychol. 2014;5:672.
19. Lopatina OL, Komleva YK, Gorina YV, Higashida H, Salmina AB. Neurobiological Aspects of Face Recognition: The Role of Oxytocin. Front Behav Neurosci. 2018;12:195.
20. Hirai M, Senju A. The two-process theory of biological motion processing. Neurosci Biobehav Rev. 2020;111:114-24.
21. Bachmann J, Munzert J, Krüger B. Neural Underpinnings of the Perception of Emotional States Derived From Biological Human Motion: A Review of Neuroimaging Research. Front Psychol. 2018;9:1763.
22. Arioli M, Cattaneo Z, Ricciardi E, Canessa N. Overlapping and specific neural correlates for empathizing, affective mentalizing, and cognitive mentalizing: A coordinate-based meta-analytic study. Hum Brain Mapp. 2021;42(14):4777-804.
23. Luyten P, Fonagy P. The neurobiology of mentalizing. Personal Disord. 2015;6(4):366-79.
24. Federici A, Parma V, Vicovaro M, Radassao L, Casartelli L, Ronconi L. Anomalous Perception of Biological Motion in Autism: A Conceptual Review and Meta-Analysis. Sci Rep. 2020;10(1):4576.
25. Schurz M, Radua J, Aichhorn M, Richlan F, Perner J. Fractionating theory of mind: a meta-analysis of functional brain imaging studies. Neurosci Biobehav Rev. 2014;42:9-34.
26. Schurz M, Radua J, Tholen MG, Maliske L, Margulies DS, Mars RB, et al. Toward a hierarchical model of social cognition: A neuroimaging meta-analysis and integrative review of empathy and theory of mind. Psychol Bull. 2021;147(3):293-327.
27. Carcea I, Froemke RC. Biological mechanisms for observational learning. Curr Opin Neurobiol. 2019;54:178-85.
28. Sambrook TD, Goslin J. Principal components analysis of reward prediction errors in a reinforcement learning task. Neuroimage. 2016;124(Pt A):276-86.
29. Olsson A, Knapska E, Lindström B. The neural and computational systems of social learning. Nat Rev Neurosci. 2020;21(4):197-212.
30. Tremblay S, Sharika KM, Platt ML. Social Decision-Making and the Brain: A Comparative Perspective. Trends Cogn Sci. 2017;21(4):265-76.
31. Yoder KJ, Decety J. The neuroscience of morality and social decision-making. Psychol Crime Law. 2018;24(3):279-95.
32. Huang D, Chen S, Wang S, Shi J, Ye H, Luo J, et al. Activation of the DLPFC Reveals an Asymmetric Effect in Risky Decision Making: Evidence from a tDCS Study. Front Psychol. 2017;8:38.
33. Hiser J, Koenigs M. The Multifaceted Role of the Ventromedial Prefrontal Cortex in Emotion, Decision Making, Social Cognition, and Psychopathology. Biol Psychiatry. 2018;83(8):638-47.
34. Park HY, Park K, Seo E, Koo SJ, Bang M, Park JY, et al. Reduced activation of the ventromedial prefrontal cortex during self-referential processing in individuals at ultra-high risk for psychosis. Aust N Z J Psychiatry. 2020;54(5):528-38.
35. Herold D, Spengler S, Sajonz B, Usnich T, Bermpohl F. Common and distinct networks for self-referential and social stimulus processing in the human brain. Brain Struct Funct. 2016;221(7):3475-85.
36. Gothard KM. Multidimensional processing in the amygdala. Nat Rev Neurosci. 2020;21(10):565-75.
37. Dalgleish T, Walsh ND, Mobbs D, Schweizer S, van Harmelen AL, Dunn B, et al. Social pain and social gain in the adolescent brain: A common neural circuitry underlying both positive and negative social evaluation. Sci Rep. 2017;7:42010.
38. Lim A, Okuno HG. A recipe for empathy: Integrating the mirror system, insula, somatosensory cortex and motherese. Int J Soc Robot. 2015;7:35-49.
39. Flores LE, Jr., Eckstrand KL, Silk JS, Allen NB, Ambrosia M, Healey KL, et al. Adolescents' neural response to social reward and real-world emotional closeness and positive affect. Cogn Affect Behav Neurosci. 2018;18(4):705-17.
40. Belzung C, Willner P, Philippot P. Depression: from psychopathology to pathophysiology. Curr Opin Neurobiol. 2015;30:24-30.
41. Gu Y, Miao S, Han J, Zeng K, Ouyang G, Yang J, et al. Complexity analysis of fNIRS signals in ADHD children during working memory task. Sci Rep. 2017;7(1):829.
42. Birnbaum R, Jaffe AE, Chen Q, Shin JH, Kleinman JE, Hyde TM, et al. Investigating the neuroimmunogenic architecture of schizophrenia. Mol Psychiatry. 2018;23(5):1251-60.
43. Quesque F, Brass M. The Role of the Temporoparietal Junction in Self-Other Distinction. Brain Topogr. 2019;32(6):943-55.
44. Babinet MN, Cublier M, Demily C, Michael GA. Eye Direction Detection and Perception as Premises of a Social Brain: A Narrative Review of Behavioral and Neural Data. Cogn Affect Behav Neurosci. 2022;22(1):1-20.
45. Gold JI, Shadlen MN. The neural basis of decision making. Annu Rev Neurosci. 2007;30:535-74.
Files
IssueVol 19 No 1 (2024) QRcode
SectionShort Communication(s)
DOI https://doi.org/10.18502/ijps.v19i1.14350
Keywords
Brain Decision-Making Neurophysiology Social Cognition Social Structure

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Labutina N, Polyakov S, Nemtyreva L, Shuldishova A, Gizatullina O. Neural Correlates of Social Decision-Making. Iran J Psychiatry. 2023;19(1):148-154.